Mapping of Mount Semeru Volcanic Mudflow Susceptibility Along the Rejali River using the GIS-based AHP-TOPSIS Ensemble Approach

  • Sonia Oktariyanti Universitas Jember
  • Entin Hidayah Universitas Jember
  • Saifurridzal Universitas Jember
  • Mokhammad Farid Ma'ruf Universitas Jember
  • Nunung Nuring Hayati Universitas Jember
  • Zulkifli Yusop Universiti Teknologi Malaysia
Keywords: Mitigation, Model Accuracy, Flood, Volcanic Mudflow, Risk Mapping

Abstract

Volcanic mudflow floods occur when rainfall runoff combines with volcanic material and flows downstream. These devastating events cause significant damage to infrastructure, disrupt economies, and result in injuries and casualties. One area where the flow of volcanic material greatly affects the situation is the Rejali River, which receives a substantial amount of volcanic debris from Mount Semeru. To address this issue and begin mitigating the associated risks, it is crucial to start by mapping the potential distribution of volcanic mudflow floods. Therefore, this study aimed to assess factors impacting volcanic mudflow flood susceptibility and to create a corresponding susceptibility map. The study employed the Analytical Hierarchy Process (AHP) and the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) to determine the influence of various factors and classify the areas, respectively. These methods were integrated with the Geographic Information System (GIS) to enhance the analysis. The weighted analysis results showed that the most impactful factors conditioning volcanic mudflow floods, in descending order, were rainfall (42.40%), land cover (13.89%), elevation (13.39%), slope (12.51%), distance from the river (7.09%), soil type (6.58%), and rock distribution (4.13%). The TOPSIS calculation further highlighted that rainfall intensity between 104.03 and 109.65 mm day-1 had the greatest influence on susceptibility. The successful integration of AHP and TOPSIS methods with GIS helped develop a volcanic mudflow flood susceptibility model with an outstanding accuracy of 0.969. The model showed that approximately 46.40% of the areas along the Rejali River exhibited very high susceptibility to volcanic mudflow floods, while an additional 16.21% indicated high susceptibility and substantial risk in most regions. Therefore, the generated susceptibility map offered important insights for shaping future mitigation strategies and influencing policy decisions.

 

Author Biographies

Entin Hidayah, Universitas Jember

 

 

Saifurridzal, Universitas Jember

 

 

 

References

Akay, H. (2021) ‘Flood hazards susceptibility mapping using statistical, fuzzy logic, and MCDM methods’, Soft Computing, 25(14), pp. 9325–9346. Available at: https://doi.org/10.1007/s00500-021-05903-1.

Armijon et al. (2018) ‘Pemodelan Analisis Spasial Aliran Lahar Dingin Untuk Mitigasi Bencana Gunung Merapi’, DIPA Fakultas Teknik Unila, 1, pp. 105–112.

Budiarti, W., Gravitiani, E. and Mujiyo, M. (2018) ‘Analisis Aspek Biofisik Dalam Penilaian Kerawanan Banjir Di Sub Das Samin Provinsi Jawa Tengah’, Jurnal Pengelolaan Sumberdaya Alam dan Lingkungan (Journal of Natural Resources and Environmental Management), 8(1), pp. 96–108. Available at: https://doi.org/10.29244/jpsl.8.1.96-108.

Ching-Lai Hwang, K.Y. (1981) ‘Lecture Notes in Economics and Mathematical Systems’, in Multiple Attribute Decision Making. 1st edn. Springer Berlin, Heidelberg, pp. XI, 269. Available at: https://doi.org/https://doi.org/10.1007/978-3-642-48318-9.

Costache, R., Țîncu, R., Elkhrachy, I., Pham, Q. B., Popa, M. C., Diaconu, D. C., Avand, M., Costache, I., Arabameri, A. and Bui, D. T. (2020) ‘New neural fuzzy-based machine learning ensemble for enhancing the prediction accuracy of flood susceptibility mapping’, Hydrological Sciences Journal, 65(16), pp. 2816–2837. Available at: https://doi.org/10.1080/02626667.2020.1842412.

Darmawan, K., Hani’ah, H. and Suprayogi, A. (2017) ‘Analisis Tingkat Kerawanan Banjir Di Kabupaten Sampang Menggunakan Metode Overlay Dengan Scoring Berbasis Sistem Informasi Geografis’, Jurnal Geodesi Undip, 6(1), pp. 31–40.

Hariati, H., Wati, M. and Cahyono, B. (2018) ‘Penerapan Algoritma C4.5 pada Penentuan Penerima Program Bantuan Pemerintah Daerah di Kabupaten Kutai Kartanegara’, Jurnal Rekayasa Teknologi Informasi (JURTI), 2(2), p. 106. Available at: https://doi.org/10.30872/jurti.v2i2.1861.

Hidayah, E., Indarto, Lee, W.-K., Halik, G. and Pradhan, B. (2022) ‘Assessing Coastal Flood Susceptibility in East Java, Indonesia: Comparison of Statistical Bivariate and Machine Learning Techniques’, Water (Switzerland), 14(23). Available at: https://doi.org/10.3390/w14233869.

Ibrahim (2021) Dukung Mitigasi Erupsi Semeru, BMKG Pasang Dashboard Khusus Cuaca. Available at: https://www.bmkg.go.id/berita/?p=dukung-mitigasi-erupsi-semeru-bmkg-pasang-dashboard-khusus-cuaca&lang=ID&tag=press-release.

Informa, J., Indonusa, P. and Issn, S. (2017) ‘SISTEM PENDUKUNG KEPUTUSAN PENENTUAN RELOKASI WARGA TERDAMPAK BENCANA MERAPI Akhmad Fauzan Nur Ubaidillah’, 3.

IRAWAN, I.G.A., DIARA, I.W. and BHAYUNAGIRI, I.D.A.B.P. (2019) ‘Pemetaan Potensi Lokasi Pengungsian Akibat Bencana Letusan Gunung Agung di Kabupaten Karangasem Berbasis Sistem Informasi Geografis (SIG)’, Jurnal Agroekoteknologi Tropika (Journal of Tropical Agroecotechnology), 8(4), pp. 371–380.

Khosravi, K. et al. (2018) ‘A comparative assessment of decision trees algorithms for flash flood susceptibility modeling at Haraz watershed, northern Iran’, Science of the Total Environment, 627(January), pp. 744–755. Available at: https://doi.org/10.1016/j.scitotenv.2018.01.266.

Khosravi, K. et al. (2019) ‘A comparative assessment of flood susceptibility modeling using Multi-Criteria Decision-Making Analysis and Machine Learning Methods’, Journal of Hydrology, 573(March), pp. 311–323. Available at: https://doi.org/10.1016/j.jhydrol.2019.03.073.

Lappas, I. and Kallioras, A. (2019) ‘Flood Susceptibility Assessment through GIS-Based Multi-Criteria Approach and Analytical Hierarchy Process ( AHP ) in a River Basin in Central Greece’, IRJET, pp. 738–751.

LARASATI, Z.R. (2017) ‘Pemetaan Daerah Risiko Banjir Lahar Berbasis Sistem Informasi Geografis Untuk Menunjang Kegiatan Mitigasi Bencana (Studi Kasus: Gunung Semeru, Kabupaten Lumajang)’, Tugas Akhir, 4, pp. 9–15.

Meydani, A. et al. (2022) ‘Daily reservoir inflow forecasting using weather forecast downscaling and rainfall-runoff modeling: Application to Urmia Lake basin, Iran’, Journal of Hydrology: Regional Studies, 44, p. 101228. Available at: https://doi.org/10.1016/j.ejrh.2022.101228.

Nyimbili, P.H., Erden, T. and Karaman, H. (2018) ‘Integration of GIS, AHP and TOPSIS for earthquake hazard analysis’, Natural Hazards, 92(3), pp. 1523–1546. Available at: https://doi.org/10.1007/s11069-018-3262-7.

Oktavia, A. et al. (2022) ‘Peran Pemerintah dan Organisasi non-Pemerintah dalam Rehabilitasi dan Rekonstruksi Pasca Erupsi Gunung Semeru’, 6(4), pp. 6937–6942.

Pratiwi, E.H. (2020) ‘Analisis Tingkat Kerawanan Banjir Di Kabupaten Lamongan’, Swara Bhumi, 3(3), pp. 1–9.

Purnawali, H.S. (2018) ‘Flood Vulnerabilty Analysis At Sidoarjo Regency Using Geographic Information System and Remote Sensing’, p. 184.

Safitri, E.D.N., Hayati, N. and Bioresita, F. (2021) ‘Analisis Deformasi Akibat Aktivitas Vulkanik Menggunakan Data Citra Sentinel-1A dan Metode DInSAR three-pass interferometry (Studi Kasus : Gunung Semeru, Jawa Timur)’, Jurnal Teknik ITS, 10(2). Available at: https://doi.org/10.12962/j23373539.v10i2.72653.

Saputra, A.K., Santoso, D.H. and Ade Yudono, A.R. (2020) ‘Zonasi Tingkat Kerawanan Banjir Pada Ruas Bekas Sungai di Kabupaten Sukoharjo’, Jurnal Geografi, 12(01), p. 255. Available at: https://doi.org/10.24114/jg.v12i01.14390.

Seejata, K. et al. (2018) ‘Assessment of flood hazard areas using Analytical Hierarchy Process over the Lower Yom Basin, Sukhothai Province’, Procedia Engineering, 212, pp. 340–347. Available at: https://doi.org/10.1016/j.proeng.2018.01.044.

Shahiri Tabarestani, E. and Afzalimehr, H. (2021) ‘A comparative assessment of multicriteria decision analysis for flood susceptibility modelling’, Geocarto International, 0(0), pp. 1–24. Available at: https://doi.org/10.1080/10106049.2021.1923834.

Ulfiana, D. et al. (2020) ‘Analisis Kerawanan Banjir sebagai Pendukung Perencanaan Model Water Sensitive Urban Design di Kabupaten Klaten’, Media Komunikasi Teknik Sipil, 26(2), pp. 183–193.

Ulfiana, D. and Sari, U.C. (2020) ‘Analysis of Flood Risk to Support Sustainable Development in the Coastal Area of Semarang City’, Ruang, 6(2), pp. 102–111. Available at: http://ejournal2.undip.ac.id/index.php/ruang.

Wijaya, S. (2022) ‘BMKG: Kawasan Gunung Semeru Diguyur Hujan dan Petir pada Siang Hari’. Available at: https://www.beritasatu.com/news/1005807/bmkg-kawasan-gunung-semeru-diguyur-hujan-dan-petir-pada-siang-hari.

Published
2023-07-24
How to Cite
Oktariyanti, S., Hidayah, E., Saifurridzal, Ma’ruf, M. F., Hayati, N. N., & Yusop, Z. (2023). Mapping of Mount Semeru Volcanic Mudflow Susceptibility Along the Rejali River using the GIS-based AHP-TOPSIS Ensemble Approach. Journal of the Civil Engineering Forum, 9(3), 303-314. https://doi.org/10.22146/jcef.6691
Section
Articles