Coastal and River Embankment Performance at Cengkareng Drain Estuary Under Compound Hazards Conditions Using HEC-RAS 2D

  • Athena Hastomo Universitas Indonesia
  • Evi Anggraheni Universitas Indonesia
  • Adi Prasetyo Directorate General of Water Resources
  • Dwita Sutjiningsih Universitas Indonesia
  • Mochamad Adhiraga Pratama Universitas Indonesia
  • Atina Umi Kalsum Vrije Universiteit Brussel
Keywords: Flood Management, Estuary Protection, Embankment, Hydrodynamic, HEC-RAS 2D

Abstract

Jakarta is prone to pluvial, fluvial, and coastal flooding due to its geographical location and topography. In response to this problem, the Indonesian government has implemented several master plans, including the National Capital Integrated Coastal Development (NCICD). This ongoing program encompasses the construction of coastal and river embankment that stretch all over the coast of Jakarta. Since many coastal areas in Jakarta are residential or industrial, evaluating this performance of embankment has become crucial for effective flood management. The findings of this research can also support the development of other locations where NCICD embankment plan and enhance coastal resilience. Therefore, this research assessed the effectiveness of coastal and river embankment at Cengkareng Drain, a vital floodway in Jakarta, during extreme events that occur simultaneously. To simulate flooding events, two-dimensional HEC-RAS features were used to numerically calculate the area and depth of inundation. The simulation required geometry, terrain, land cover, and unsteady flow data. For the flow boundary conditions, a 100-year design rainfall, HHWL (Highest High Water Level), and 100-year design wave were considered to represent estuary conditions accurately. The simulation result showed that the maximum water level influenced by these factors was +3.145 mMSL, while the planned embankment top elevation was +3.40 mMSL. Furthermore, without the NCICD embankment, the simulation showed an inundation area of 1212.37 ha, which was reduced to 1111.22 ha after their implementation, leading to a decrease of 101.15 ha. This reduction significantly decreases potential damage to property and infrastructure, particularly in densely populated areas. The simulation also showed a reduction of 86.49 hectares or 66.22% in the inundation area with a depth exceeding 1 meter. These findings demonstrate the effectiveness of embankment in reducing the inundation area without any overtopping incidents.

Author Biographies

Athena Hastomo, Universitas Indonesia

 

 

Evi Anggraheni, Universitas Indonesia

 

 

Adi Prasetyo, Directorate General of Water Resources

 

 

References

‘Amalina, A.D., Atmodjo, W. and Pranowo, W.S., 2019. Karakteristik Pasang Surut di Teluk Jakarta Berdasarkan Data 253 Bulan. Jurnal Riset Jakarta, 12(1), pp.25–36. https://doi.org/10.37439/jurnaldrd.v12i1.7.

Abidin, H.Z., Andreas, H., Djaja, R., Darmawan, D. and Gamal, M., 2008. Land Subsidence Characteristics of Jakarta Between 1997 and 2005, as Estimated Using GPS Surveys. GPS Solutions, 12(1), pp.23–32. https://doi.org/10.1007/s10291-007-0061-0.

Anh, T.N., Huu, X.N., Tuong, V.N.T. and Tai, L.P., 2022. Application of HEC-HMS Model and Satellite Precipitation Products to Restore Runoff in Laigiang River Basin in Vietnam. Indonesian Journal of Geography, 54(1), pp.1–10. https://doi.org/10.22146/ijg.66176.

Araújo, P.V.N., Amaro, V.E., Aguiar, L.S., Lima, C.C. and Lopes, A.B., 2021. Tidal Flood Area Mapping Fronts Climate Change Scenarios: Case study in a Tropical Estuary in the Brazilian Semi-Arid Region. Natural Hazards and Earth System Sciences, 21(11), pp.3353–3366. https://doi.org/10.5194/nhess-21-3353-2021.

Bates, P.D., Quinn, N., Sampson, C., Smith, A., Wing, O., Sosa, J., Savage, J., Olcese, G., Neal, J., Schumann, G., Giustarini, L., Coxon, G., Porter, J.R., Amodeo, M.F., Chu, Z., Lewis-Gruss, S., Freeman, N.B., Houser, T., Delgado, M., Hamidi, A., Bolliger, I., E. McCusker, K., Emanuel, K., Ferreira, C.M., Khalid, A., Haigh, I.D., Couasnon, A., E. Kopp, R., Hsiang, S. and Krajewski, W.F., 2021. Combined Modelling of US Fluvial, Pluvial, and Coastal Flood Hazard Under Current and Future Climates. Water Resources Research, 57(2), pp.1–29. https://doi.org/10.1029/2020WR028673.

Breili, K., James Ross Simpson, M., Klokkervold, E. and Roaldsdotter Ravndal, O., 2020. High-Accuracy Coastal Flood Mapping for Norway Using Lidar Data. Natural Hazards and Earth System Sciences, 20(2), pp.673–694. https://doi.org/10.5194/nhess-20-673-2020.

Chow, V.T., Maidment, D.R. and Mays, L.W., 1988. Applied Hydrology. xiii ed. Civil Engineering. New York: McGraw-Hill.

Fiaschi, S. and Wdowinski, S., 2020. Local Land Subsidence in Miami Beach (FL) and Norfolk (VA) and Its Contribution to Flooding Hazard in Coastal Communities Along the U.S. Atlantic Coast. Ocean and Coastal Management, [online] 187(December 2019), p.105078. https://doi.org/10.1016/j.ocecoaman.2019.105078.

Ji, X., Li, Y., Luo, X., He, D., Guo, R., Wang, J., Bai, Y., Yue, C. and Liu, C., 2020. Evaluation of Bias Correction Methods for APHRODITE Data to Improve Hydrologic Simulation in a Large Himalayan Basin. Atmospheric Research, [online] 242(September 2019), p.104964. https://doi.org/10.1016/j.atmosres.2020.104964.

Kumbier, K., Carvalho, R.C., Vafeidis, A.T. and Woodroffe, C.D., 2018. Investigating Compound Flooding in an Estuary using Hydrodynamic Modelling: A Case Study from the Shoalhaven River, Australia. Natural Hazards and Earth System Sciences, 18(2), pp.463–477. https://doi.org/10.5194/nhess-18-463-2018.

Mayo, T.L. and Lin, N., 2022. Climate Change Impacts to the Coastal Flood Hazard in the Northeastern United States. Weather and Climate Extremes, 36(April). https://doi.org/10.1016/j.wace.2022.100453.

Nasjono, J.K., Utomo, S., Marawali, U.D.B., Debit, P.K. and Number, S.C.S., 2018. Keandalan Metode Soil Conservation Services-Curve Number untuk Perhitungan Debit Puncak DAS Manikin. VII(2), pp.183–192.

Pasquier, U., He, Y., Hooton, S., Goulden, M. and Hiscock, K.M., 2019. An Integrated 1D–2D Hydraulic Modelling Approach to Assess the Sensitivity of a Coastal Region to Compound Flooding Hazard Under Climate Change. Natural Hazards, 98(3), pp.915–937. https://doi.org/10.1007/s11069-018-3462-1.

Surinati, D., 2007. Pasang Surut dan Energinya. Oseana, xxxii(1), pp.15–22.

Szmytkiewicz, M., Szmytkiewicz, P. and Marcinkowski, T., 2018. Comparison of Design Wave Heights Determined on the Basis of Long- and Short-term Measurement Data. Archives of Hydroengineering and Environmental Mechanics, 65(2), pp.123–142. https://doi.org/10.1515/heem-2018-0009.

Triana, K. and Wahyudi, A.J., 2020. Sea Level Rise in Indonesia: The Drivers and the Combined Impacts from Land Subsidence. ASEAN Journal on Science and Technology for Development, 37(3), pp.115–121. https://doi.org/10.29037/AJSTD.627.

UNESCO (2023), ‘Sea level station monitoring facility’, https://www.ioc sealevelmonitoring.org/. [Accessed 10 May 2023].

Sutjiningsih, D., Soeryantono, H., Anggraheni, E. and Saleh, T. (2021), ‘The biotic integrity of ciliwung river in west java under multiple urban stressors’, IOP Conference Series: Earth and Environmental Science 641(1), 012005.

SNVT-PTPIN (2021a), ‘Data angin harian tahun 2011 - 2021’, Jakarta.

SNVT-PTPIN (2021b), ‘Data curah hujan pch cengkareng drain 2003-2021’, Jakarta.

SNVT-PTPIN (2021c),‘Data pasang surut 4 - 19 oktober 2021’, Jakarta.

Purnama, S., Marfai, M., Anggraini, D. and Cahyadi, A. (2015), ‘Estimasi risiko kerugian ekonomi akibat banjir rob menggunakan sistem informasi geografis di kecamatan penjaringan, jakarta utara’, Jurnal SPATIAL Wahana Komunikasi dan Informasi Geografi 14(2), 8–13

PT Aditya Engineering Consultant (2020), ‘Laporan detail desain pengaman pantai ibukota negara tahap 2’, Jakarta.

Hiben, M., Gebeyehu Awoke, A. and Adugna Ashenafi, A. (2022), ‘Hydroclimatic variability, characterization, and long term spacio-temporal trend analysis of the ghba river subbasin, ethiopia’, Advances in Meteorology

Fowler, J., Cohen, L. and Jarvis, P. (1998), Practical Statistics for Field Biology, 2nd edn, John Wiley & Sons, Inc.

Directorate General of Human Settlements (2021), ‘Peta lidar dki jakarta’, Jakarta.

Ciliwung Cisadane River Basin Development Agency (2021), ‘Data Pembacaan Tinggi Muka Air Cengkareng Drain Tahun 2019 - 2021’. Jakarta.

Published
2023-07-24
How to Cite
Hastomo, A., Anggraheni, E., Prasetyo, A., Sutjiningsih, D., Pratama, M. A., & Umi Kalsum, A. (2023). Coastal and River Embankment Performance at Cengkareng Drain Estuary Under Compound Hazards Conditions Using HEC-RAS 2D. Journal of the Civil Engineering Forum, 9(3), 329-342. https://doi.org/10.22146/jcef.7087
Section
Articles