Mapping the Lava Flood Hazard Using the Flood Discharge Approach and 2D Hydrodynamic Modeling at the Rejali River, Mount Semeru
Abstract
In December 2021, Mount Semeru experienced an eruption accompanied by extreme rainfall, which resulted in lava floods, known as lahars or debris flows. The lava flood destroyed infrastructure, resulting in loss of life. Various rivers surrounding Mount Semeru, including the Rejali River, experienced the effects of this phenomenon. To address this, a study is needed to analyze the occurrence and frequency of lava floods over specific time intervals through the creation of a hazard map. This study aims to map the hazard of lava floods for various return periods using a coupled HEC-HMS and HEC-RAS software alongside a lava flood discharge approach. The HEC-HMS software is used to simulate hydrological processes, to obtain the lava flood discharge, while the HEC-RAS is used to model a two-dimensional (2D) lava flood hazard map. The input parameters of the modeling in this study are rainfall intensity, soil type, land cover, river distance, slope, and elevation. The results show that the flood area covers 9.55% of the total study area by 2 year return period (Q2), 11.80% by Q10, 14.10% by Q50, and 15.72% by Q200 with an overall validation Root Mean Square Error (RMSE) of 0.16. These changes are determined by the discharge volume from each return phase and the river's shallow depth, which causes overflow beyond the river's ability to accommodate the flow. Thus, this study suggests that the models successfully generated a reliable model for mapping the risk of lava floods on the Rejali River. These findings can help the government reduce disaster losses through adequate adaptation and mitigation initiatives.
References
Abdessamed, D. and Abderrazak, B. (2019), âCoupling HEC-RAS and HEC-HMS in rainfallârunoff modeling and evaluating floodplain inundation maps in arid environments: a case study of Ain Sefra City, Ksour Mountain. SW of Algeriaâ, Environ. Earth Sci. 78(19), 1â17. URL: https://doi.org/10.1007/s12665-019-8604-6
Abdessamed, D. and Bouanani, A. (2017), âHydrological modeling in the semi-arid region using HEC-HMS model. case study in Ain Sefra watershed, Ksour Mountains (SW-Algeria)â, Journal of Fundamental and Applied Sciences (May). URL: https://doi.org/10.4314/jfas.v9i2.27
Abu-hashim, M., Mohamed, E. and Belal,A. E. A. (2015), âIdentification of potential soil water retention using hydric numerical model at arid regions by land-use changesâ, Int. Soil Water Conserv. Res. 3(4), 305â315. URL: https://doi.org/10.1016/j.iswcr.2015.10.005
Arimbi, Y., R., S. and Winarta, B. (2022), âPemodelan aliran Sungai Jatiroto menggunakan software HEC-RAS 5.0.7â, 2(2), 273â285.
Brunner, G. W. (2016), HEC-RAS Userâs Manual, U.S. Army Corps of Engineers, California.
Brunner, G. W., Sanchez, A., Molls, T. and Parr, D. A. (2018), HEC-RAS verification and validation tests, Technical Report RD-52, USACE.
Elfeki, A., Masoud, M. and Niyazi, B. (2017), âIntegrated rainfallârunoff and flood inundation modeling for flash flood risk assessment under data scarcity in arid regions: Wadi Fatimah basin case study, Saudi Arabiaâ, Nat. Hazards 85(1), 87â109. URL: https://doi.org/10.1007/s11069-016-2559-7
Fahmi,A. H., Suripin, S.,Wulandari, D. A. and Murod, K. (2022),âPemodelan hujan limpasan menggunakan HEC-HMS pada daerah tangkapan air Waduk Wonogiriâ, Syntax Literate; Jurnal Ilmiah Indonesia 7(4), 3795â3807.
Gupta, L. and Dixit, J. (2022), âEstimation of rainfallinduced surface runoff for the Assam region, India, using the GIS-based NRCS-CN methodâ, J. Maps p. 1â13. URL: https://doi.org/10.1080/17445647.2022.2076624
Hamdi, M., El Molla, D. A. and Gad, M. A. (2019),âA comparison between 1D, 2D and semi 2D hydraulic modelsâ, Al -Azhar Univ. Civ. Eng. Res. Mag. 41(4), 295â305.
Hashim, H. Q. and Sayl, K. N. (2022),âIncorporating GIS technique and SCS-CN approach for runoff estimation in the ungauged watershed: A case study west desert of Iraqâ, Iraqi J. Civ. Eng. 14(2), 1â6. URL: https://doi.org/10.37650/ijce.2020.172862
Hou, J., Liu, F., Tong, Y., Guo, K., Ma, L. and Li, D. (2020), âNumerical simulation for runoff regulation in rain garden using 2D hydrodynamic modelâ, Ecol. Eng. 153(March), 105794. URL: https://doi.org/10.1016/j.ecoleng.2020.105794
Idfi, G. (2017), âPerbandingan model aliran banjir unsteady flow dan steady flow pada Sungai Ngotok Ring Kanalâ, Bangunan 22(2), 31â40.
Julzarika, A. and Carolita, I. (2015),âKlasifikasi penutup lahan berbasis objek pada citra satelit spot dengan menggunakan metode tree algorithm (object based on land cover)â.
Keputusan Menteri Pemukiman dan Prasarana Wilayah (2004),âPerencanaan teknis tanggul pada sungai laharâ.
Kholiq, M. A. (2017), âSimulasi aliran banjir lahar pasca erupsi Gunung Merapi 2010 terhadap keberadaan sabo dam di Sungai Gendolâ, J. Tek. XXII(2), 410â415.
Mishra, S. K., Babu, P. S. and Singh,V. P. (2007),âSCS-CN method revisitedâ, Adv. Hydraul. Hydrol. . (January).
Munna, G. M., Alam, M. J. B., Uddin, M. M., Islam, N., Orthee,A. A. and Hasan, K. (2021),âRunoff prediction of surma basin by curve number (CN) method using ARCGIS and HEC-RASâ, Environ. Sustain. Indic. 11, 100129.
Nakatani, K., Kosugi, K. and Satofuka, Y. (2021), Debris flow simulations due to landslide dam outburst and considering effective countermeasures, p. 235â240.
Narwade, R., Pathak, H., Panhalkar, S., Kulkarni, V. S. and Hingmire, A. P. (2022),âReview paper for floodplain mapping with applications of HEC-HMS, HEC-RAS and ArcGIS softwares â a remote sensing and GIS approachâ, J. Pendidik. Geogr. 26(1), 15â29.
Permatasari, A. L., Suherningtyas, I. A. and Wiguna, P. P. K. (2021), âKesiapan infrastruktur data spasial sebagai upaya mitigasi banjir lahar di kali putih Kabupaten Magelang Jawa Tengahâ,J. Pendidik. Geogr. 26(1), 15â29.
Purba, A., Sumantri, S. H., Kurnadi, A., Raka, D. and Putra, K. (2022),âAnalisis kapasitas masyarakat terdampak erupsi Gunung Semeruâ, 6(2), 599â608.
Scharffenberg, W. and FM (2016), Hydrologic Modeling System HEC-HMS v3.5: users manual. Tigor Oktaga, A., Suripin, S. and Darsono, S. (2016),
âPerbandingan hasil pemodelan aliran satu dimensi unsteady flow dan steady flow pada banjir kotaâ, Media Komun. Tek. Sipil 21(1), 35. URL: https://doi.org/10.14710/mkts.v21i1.11229
Traore, V. B., Bop, M., Faye, M., Giovani, M., Traore, V. B., Malomar, G., Hadj, E., Gueye, O.,
Sambou, H., Dione, A. N., Fall, S., Diaw, A. T., Sarr, J. and Beye, A. C. (2015), âUsing of HEC-RAS model for hydraulic analysis of a river with agricultural vocation: A case study of the Kayanga river basin, Senegalâ, Am. J. Water Resour. 3(5), 147â154. URL: https://doi.org/10.12691/ajwr-3-5-2
Ulinnuha, I., Prasetyo, Y. and Sabri, L. (2020), âAnalisis spasial aliran lahar menggunakan HEC-HMS dan HEC-RAS pada Kali Gendol-Opak kawasan Gunung Merapiâ, J. Geod. Undip 9(1), 20â28.
Victory, D. E., Siswanto and Trimaijon (2016), âKajian lebar bangunan pelimpah tipe lengkung terhadap elevasi muka banjir (studi kasus Waduk Tenayan)â, 3.
Yanuarto, T. (2020), âHujan lebat picu banjir lahar hujan dari Gunung Semeruâ, Badan Nas. Penanggulangan Bencana .
Copyright (c) 2024 The Author(s)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright is granted to authors for the purpose of providing protection for articles written to describe experiments and their results. JCEF will protect and defend the work and reputation of the author and are also willing to address any allegations of violation, plagiarism, fraud, etc. against articles written and published by JCEF. JCEF is published under the terms of the Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0). The author holds the copyright and assigns the journal rights to the first publication (online and print) of the work simultaneously.