Analysis of MSMEs' Cassava Production Efficiency Using a Comparison of Machine Learning Models in Jember Regency

https://doi.org/10.22146/aij.v12i1.106018

Danang Kumara Hadi(1*), Yuta Sato(2)

(1) Department of Agroindustrial Technology, Faculty of Agriculture Universitas Muhammadiyah Jember, Jl. Karimata No. 49, Jember 68124, Indonesia
(2) Graduate School of Engineering, Ibaraki University, Japan
(*) Corresponding Author

Abstract


Cassava is one of Indonesia's agro-industrial commodities, but many Micro, Small, and Medium Enterprises (MSMEs) in the cassava processing industry face difficulties in achieving optimal production efficiency. This study aims to evaluate the efficiency of cassava processing production systems in MSMEs in Jember by comparing machine learning algorithms (Linear Regression, Random Forest, Support Vector Regression (SVR), and XGBoost) to predict output and key efficiency factors. The data used consists of 250 data points: 80% for model training and 20% for testing to build a machine learning-based prediction model, with input features production processing as the X-axis, and output in the form of production volume as the Y-axis. Data preprocessing, exploratory data analysis, and modeling were conducted using Python, with evaluation based on MAE, RMSE, and R² metrics. Among the tested models, Random Forest demonstrated the best performance with an R² value of 0.990. Sensitivity analysis revealed that production output increases significantly with the addition of labor and machines, with an optimal configuration of 15–20 workers and 2–3 machines per batch. The study concludes that focusing on overall production efficiency rather than merely increasing resources is the most effective strategy.

Keywords


cassava; efficiency analysis; machine learning algorithm; prediction model

Full Text:

PDF


References

Aminanti Suraya Putri, B., Dian Wisika Prajanti, S., Pujiati, A., 2020. The Effect of Capital, Labor and Raw Materials Toward Production Value (Study on Tapioca Flour Industry in Margoyoso District, Pati Regency). J. Econ. Educ. 9, 143–149.

Benos, L., Tagarakis, A.C., Dolias, G., Berruto, R., Kateris, D., 2021. Machine learning in agriculture: A comprehensive updated review. Sensors.

Bhargav, C.S., Nethi, A., Maruti, G., Valluri, S., Sameksha, A., 2024. INTERNATIONAL JOURNAL OF Comparing Data Structures for Efficient Search Algorithms 7. https://doi.org/10.15680/IJMRSET.2024.0712058

BPS kabupaten jember, 2020. Berita Resmi Statistik. Bps.Go.Id.

D'Amour, A., Heller, K., Moldovan, D., Adlam, B., Alipanahi, B., Beutel, A., Chen, C., Deaton, J., Eisenstein, J., Hoffman, M.D. and Hormozdiari, F., 2022. Underspecification presents challenges for credibility in modern machine learning. Journal of Machine Learning Research, 23(226), pp.1-61.

Elbasi, E., Zaki, C., Topcu, A.E., Abdelbaki, W., Zreikat, A.I., Cina, E., Shdefat, A. and Saker, L., 2023. Crop prediction model using machine learning algorithms. Applied Sciences, 13(16), p.9288.

Erkamim, M., Suswadi, S., Subarkah, M.Z., Widarti, E., 2023. Komparasi Algoritme Random Forest dan XGBoosting dalam Klasifikasi Performa UMKM. J. Sist. Inf. Bisnis 13, 127–134. https://doi.org/10.21456/vol13iss2pp127-134

Hadi, D.K., Putri, R.A., Farida, S.N., Santoso, I., 2021. Application of Cleaner Production in a Fruit Chips Industry. Ind. J. Teknol. dan Manaj. Agroindustri 10, 162–171. https://doi.org/10.21776/ub.industria.2021.010.02.7

Hadi, D.K., Setiawan, A.P., Indrian, O.V., Rosyid, E.F., 2023. Evaluation of Sustainability Supply Chain Performance in the Food Industry: A Case Study. J. Tek. Ind. 24, 95–108. https://doi.org/10.22219/jtiumm.vol24.no2.95-108

Hamidi, M.A., Banowati, E., 2019. Utilization of mocaf flour (modified cassava flour) for revitalization of the use tapioca flour in communities for empowering hulu-hilir human resources in wonogiri regency. IOP Conf. Ser. Earth Environ. Sci. 243. https://doi.org/10.1088/1755-1315/243/1/012081

Kreuzberger, D., Kühl, N., Hirschl, S., 2023. Machine learning operations (mlops): Overview, definition, and architecture. IEEE access.

Kumar, Y., Kaur, K. and Singh, G., 2020, January. Machine learning aspects and its applications towards different research areas. In 2020 International conference on computation, automation and knowledge management (ICCAKM) (pp. 150-156). IEEE.

Kumara, D., Assadam, A., Eka, Z., Renadi, B., 2023. Supplier Selection Based on Green Procurement of Agricultural Commodities of Cassava : Environmental Perspective From Jember Regency 1, 67–75.

Kusunartutik, F., Dwidayati, N.K., 2022. Pemilihan Titik Knot Optimal Menggunakan Metode GCV Dalam Regresi Nonparametrik Spline Truncated. Indones. J. Math. Nat. Sci. 45, 69–76. https://doi.org/10.15294/ijmns.v45i2.39727

Manurung, B.A., Gea, A., Silalahi, A.P., Samosir, N., 2024. Penerapan Algoritma Regresi Linear Untuk Memprediksi Jumlah Wisatawan. J. Ilm. Sist. Inf. 4, 1–9.

Moosavi, S.M., Jablonka, K.M., Smit, B., 2020. The role of machine learning in the understanding and design of materials. J. Am. …. https://doi.org/10.1021/jacs.0c09105

Niekurzak, M., Lewicki, W., Coban, H.H., Bera, M., 2023. A Model to Reduce Machine Changeover Time and Improve Production Efficiency in an Automotive Manufacturing Organisation. Sustain. 15. https://doi.org/10.3390/su151310558

Nur, N., Wajidi, F., Sulfayanti, S., Wildayani, W., 2023. Implementasi Algoritma Random Forest Regression untuk Memprediksi Hasil Panen Padi di Desa Minanga. J. Komput. Terap. 9, 58–64. https://doi.org/10.35143/jkt.v9i1.5917

Rosova, A., Behun, M., Khouri, S., Cehlar, M., Ferencz, V., Sofranko, M., 2022. Case study: the simulation modeling to improve the efficiency and performance of production process. Wirel. Networks 28, 863–872. https://doi.org/10.1007/s11276-020-02341-z

Sepri, D., Fauzi, A., 2020. Prediksi Harga Cabai Merah Menggunakan Support Vector Regression. Comput. Based Inf. Syst. J. 8, 1–5. https://doi.org/10.33884/cbis.v8i2.1921

Shanavas, S., Padmaja, G., Moorthy, S.N., Sajeev, M.S., Sheriff, J.T., 2011. Process optimization for bioethanol production from cassava starch using novel eco-friendly enzymes. Biomass and Bioenergy 35, 901–909. https://doi.org/10.1016/j.biombioe.2010.11.004

Sosa-Perez, V., Palomino-Moya, J., Leon-Chavarri, C., Raymundo-Ibañez, C., Dominguez, F., 2020. Lean Manufacturing Production Management Model focused on Worker Empowerment aimed at increasing Production Efficiency in the textile sector. IOP Conf. Ser. Mater. Sci. Eng. 796. https://doi.org/10.1088/1757-899X/796/1/012024

Subasi, A., 2020. Practical machine learning for data analysis using python. books.google.com.

Syafei, R.M., Efrilianda, D.A., 2023. Machine Learning Model Using Extreme Gradient Boosting (XGBoost) Feature Importance and Light Gradient Boosting Machine (LightGBM) to Improve Accurate Prediction of Bankruptcy. Recursive J. Informatics 1, 64–72. https://doi.org/10.15294/rji.v1i2.71229

Yan, Y. (2022). Machine learning fundamentals. Machine Learning in Chemical Safety and Health: Fundamentals with Applications, 19-46. https://doi.org/10.1002/9781119817512.ch2

Zaki, M.J., Jr, W.M., Meira, W., 2020. Data mining and machine learning: Fundamental concepts and algorithms. books.google.com.

Zhang, X., Tian, Y., Chen, L., Hu, X. and Zhou, Z., 2022. Machine learning: a new paradigm in computational electrocatalysis. The Journal of Physical Chemistry Letters, 13(34), pp.7920-7930. https://doi.org/10.1021/acs.jpclett.2c01710



DOI: https://doi.org/10.22146/aij.v12i1.106018

Article Metrics

Abstract views : 2198 | views : 1149

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Danang Kumara Hadi, Yuta Sato

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.