Analysis of MSMEs' Cassava Production Efficiency Using a Comparison of Machine Learning Models in Jember Regency
Danang Kumara Hadi(1*), Yuta Sato(2)
(1) Department of Agroindustrial Technology, Faculty of Agriculture Universitas Muhammadiyah Jember, Jl. Karimata No. 49, Jember 68124, Indonesia
(2) Graduate School of Engineering, Ibaraki University, Japan
(*) Corresponding Author
Abstract
Keywords
Full Text:
PDFReferences
Aminanti Suraya Putri, B., Dian Wisika Prajanti, S., Pujiati, A., 2020. The Effect of Capital, Labor and Raw Materials Toward Production Value (Study on Tapioca Flour Industry in Margoyoso District, Pati Regency). J. Econ. Educ. 9, 143–149.
Benos, L., Tagarakis, A.C., Dolias, G., Berruto, R., Kateris, D., 2021. Machine learning in agriculture: A comprehensive updated review. Sensors.
Bhargav, C.S., Nethi, A., Maruti, G., Valluri, S., Sameksha, A., 2024. INTERNATIONAL JOURNAL OF Comparing Data Structures for Efficient Search Algorithms 7. https://doi.org/10.15680/IJMRSET.2024.0712058
BPS kabupaten jember, 2020. Berita Resmi Statistik. Bps.Go.Id.
D'Amour, A., Heller, K., Moldovan, D., Adlam, B., Alipanahi, B., Beutel, A., Chen, C., Deaton, J., Eisenstein, J., Hoffman, M.D. and Hormozdiari, F., 2022. Underspecification presents challenges for credibility in modern machine learning. Journal of Machine Learning Research, 23(226), pp.1-61.
Elbasi, E., Zaki, C., Topcu, A.E., Abdelbaki, W., Zreikat, A.I., Cina, E., Shdefat, A. and Saker, L., 2023. Crop prediction model using machine learning algorithms. Applied Sciences, 13(16), p.9288.
Erkamim, M., Suswadi, S., Subarkah, M.Z., Widarti, E., 2023. Komparasi Algoritme Random Forest dan XGBoosting dalam Klasifikasi Performa UMKM. J. Sist. Inf. Bisnis 13, 127–134. https://doi.org/10.21456/vol13iss2pp127-134
Hadi, D.K., Putri, R.A., Farida, S.N., Santoso, I., 2021. Application of Cleaner Production in a Fruit Chips Industry. Ind. J. Teknol. dan Manaj. Agroindustri 10, 162–171. https://doi.org/10.21776/ub.industria.2021.010.02.7
Hadi, D.K., Setiawan, A.P., Indrian, O.V., Rosyid, E.F., 2023. Evaluation of Sustainability Supply Chain Performance in the Food Industry: A Case Study. J. Tek. Ind. 24, 95–108. https://doi.org/10.22219/jtiumm.vol24.no2.95-108
Hamidi, M.A., Banowati, E., 2019. Utilization of mocaf flour (modified cassava flour) for revitalization of the use tapioca flour in communities for empowering hulu-hilir human resources in wonogiri regency. IOP Conf. Ser. Earth Environ. Sci. 243. https://doi.org/10.1088/1755-1315/243/1/012081
Kreuzberger, D., Kühl, N., Hirschl, S., 2023. Machine learning operations (mlops): Overview, definition, and architecture. IEEE access.
Kumar, Y., Kaur, K. and Singh, G., 2020, January. Machine learning aspects and its applications towards different research areas. In 2020 International conference on computation, automation and knowledge management (ICCAKM) (pp. 150-156). IEEE.
Kumara, D., Assadam, A., Eka, Z., Renadi, B., 2023. Supplier Selection Based on Green Procurement of Agricultural Commodities of Cassava : Environmental Perspective From Jember Regency 1, 67–75.
Kusunartutik, F., Dwidayati, N.K., 2022. Pemilihan Titik Knot Optimal Menggunakan Metode GCV Dalam Regresi Nonparametrik Spline Truncated. Indones. J. Math. Nat. Sci. 45, 69–76. https://doi.org/10.15294/ijmns.v45i2.39727
Manurung, B.A., Gea, A., Silalahi, A.P., Samosir, N., 2024. Penerapan Algoritma Regresi Linear Untuk Memprediksi Jumlah Wisatawan. J. Ilm. Sist. Inf. 4, 1–9.
Moosavi, S.M., Jablonka, K.M., Smit, B., 2020. The role of machine learning in the understanding and design of materials. J. Am. …. https://doi.org/10.1021/jacs.0c09105
Niekurzak, M., Lewicki, W., Coban, H.H., Bera, M., 2023. A Model to Reduce Machine Changeover Time and Improve Production Efficiency in an Automotive Manufacturing Organisation. Sustain. 15. https://doi.org/10.3390/su151310558
Nur, N., Wajidi, F., Sulfayanti, S., Wildayani, W., 2023. Implementasi Algoritma Random Forest Regression untuk Memprediksi Hasil Panen Padi di Desa Minanga. J. Komput. Terap. 9, 58–64. https://doi.org/10.35143/jkt.v9i1.5917
Rosova, A., Behun, M., Khouri, S., Cehlar, M., Ferencz, V., Sofranko, M., 2022. Case study: the simulation modeling to improve the efficiency and performance of production process. Wirel. Networks 28, 863–872. https://doi.org/10.1007/s11276-020-02341-z
Sepri, D., Fauzi, A., 2020. Prediksi Harga Cabai Merah Menggunakan Support Vector Regression. Comput. Based Inf. Syst. J. 8, 1–5. https://doi.org/10.33884/cbis.v8i2.1921
Shanavas, S., Padmaja, G., Moorthy, S.N., Sajeev, M.S., Sheriff, J.T., 2011. Process optimization for bioethanol production from cassava starch using novel eco-friendly enzymes. Biomass and Bioenergy 35, 901–909. https://doi.org/10.1016/j.biombioe.2010.11.004
Sosa-Perez, V., Palomino-Moya, J., Leon-Chavarri, C., Raymundo-Ibañez, C., Dominguez, F., 2020. Lean Manufacturing Production Management Model focused on Worker Empowerment aimed at increasing Production Efficiency in the textile sector. IOP Conf. Ser. Mater. Sci. Eng. 796. https://doi.org/10.1088/1757-899X/796/1/012024
Subasi, A., 2020. Practical machine learning for data analysis using python. books.google.com.
Syafei, R.M., Efrilianda, D.A., 2023. Machine Learning Model Using Extreme Gradient Boosting (XGBoost) Feature Importance and Light Gradient Boosting Machine (LightGBM) to Improve Accurate Prediction of Bankruptcy. Recursive J. Informatics 1, 64–72. https://doi.org/10.15294/rji.v1i2.71229
Yan, Y. (2022). Machine learning fundamentals. Machine Learning in Chemical Safety and Health: Fundamentals with Applications, 19-46. https://doi.org/10.1002/9781119817512.ch2
Zaki, M.J., Jr, W.M., Meira, W., 2020. Data mining and machine learning: Fundamental concepts and algorithms. books.google.com.
Zhang, X., Tian, Y., Chen, L., Hu, X. and Zhou, Z., 2022. Machine learning: a new paradigm in computational electrocatalysis. The Journal of Physical Chemistry Letters, 13(34), pp.7920-7930. https://doi.org/10.1021/acs.jpclett.2c01710
Article Metrics
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Danang Kumara Hadi, Yuta Sato

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.







