The effects of ethanolic extract of Phaleria macrocarpa (Scheff.) Boerl leaf on macrophage phagocytic activity in diabetic rat model

https://doi.org/10.19106/JMedSci005002201802

Ira Cinta Lestari(1*), Muhammad Ghufron(2), Sri Herwiyanti(3), Yustina Andwi Ari Sumiwi(4)

(1) Study Program of Master in Biomedical Sciences, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta
(2) Department of Histology and Cell Biology, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta
(3) Department of Histology and Cell Biology, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta
(4) Department of Histology and Cell Biology, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta
(*) Corresponding Author

Abstract


Diabetic patients suffer inflammation and immune deficiency as a consequence of the decrease in macrophage phagocytic activity, thus making them vulnerable to infection. The ability of Ethanolic Extract of Phaleria macrocarpa Leaf (EEPML) to increase macrophage phagocytic activity has also a potential in the diabetic case. EEPML also has anti-inflammatory effect. In this study the EEPML potential to increase peritoneal macrophage phagocytic activity and change M1 and M2 macrophage percentage in diabetic rat model is investigated. This was a quasi experimental study with post test only control group design. Fourty five male Sprague Dawley rats within the age of 8 weeks were classified into normal control group, diabetic control group with solvent, diabetic with 7mg/200g, 14mg/200g, and 28mg/200g of EEPML peroral administration, once a day. The diabetic rat model was made with streptozotocin and nicotinamide injection. The rats were terminated in 3rd, 14th and 25th day of extract administration. Peritoneal fluid was isolated then cultured for macrophage phagocytic activity assay with latex beads. M1 and M2 macrophage percentage was  analyzed using flow cytometry with anti CD40 and CD206 antibody. Result of statistical analysis show that  active macrophage and phagocytic index mean of EEPML rat groups on day 3, 14 and 25 was significantly higher than the control group. The mean of M1 macrophage percentage of EEPML rat groups was significantly higher than control on day 3 and 14, and lower on day 25, while mean of M2 macrophage percentage didn’t show any significant difference within groups. Conclusion of this study is administration of EEPML increases peritoneal macrophage phagocytic activity on day 3, 14 and 25. This is also increases M1 macrophage percentage on day 14, decrease M1 macrophage percentage on day 25, and doesn’t change peritoneal M2 macrophage percentage in diabetic rat model.

Keywords


diabetes mellitus; peritoneal macrophage; phagocytosis; M1 macrophage; M2 macrophage

Full Text:

PDF


References

Yang, J., Zhao, P., Wan, D., Zhou, Q., Wang, C., Shu, G., Mei, Z., Yang, X. Antidiabetic Effect of Methanolic Extract from Berberis julianae Schneid. via Activation of AMP-Activated Protein Kinase in Type 2 Diabetic Mice. Evid Based Complement Alternat Med 2014; 106206. 2. Wild, S., Roglic, G., Green, A., Sicree, R., King, H. Global Prevalence of Diabetes : Estimates for the year 2000 and projections for 2030. Diabetes Care 2004; 27(5):1047-53. 3. Keane, K.N., Cruzat, V.F., Carlessi, R., de Bittencourt, P.I. Jr., Newsholme, P. Molecular Events Linking Oxidative Stress and Inflammation to Insulin Resistance and β-Cell Dysfunction. Oxid Med Cell Longev 2015; 181643. 4. Wang, W., Wang, J., Dong, S.F., Liu, C.H., Italiani, P., Sun, S.H., Xu, J., Boraschi, D., Ma, S.P., Qu, D. Immunomodulatory activity of andrographolide on macrophage activation and specific antibody response. Acta Pharmacol Sin 2010; 31(2):191-201. 5. Espinoza-Jiménez, A., Peón, A.N., Terrazas, L.I. Alternatively Activated Macrophages in Types 1 and 2 Diabetes. Mediators Inflamm 2012; 815953. 6. Parsa, R., Andresen, P., Gillett, A., Mia, S., Zhang, X.M., Mayans, S., Holmberg, D., Harris, R.A. Adoptive transfer of immunomodulatory M2 macrophages prevents type 1 diabetes in NOD mice. Diabetes 2012; 61(11):2881-92. 7. Liu, H.F., Zhang, H.J., Hu, Q.X., Liu, X.Y., Wang, Z.Q., Fan, J.Y., Zhan, M., Chen, F.L. Altered polarization, morphology, and impaired innate immunity germane to resident peritoneal macrophages in mice with long-term type 2 diabetes. J Biomed Biotechnol 2012; 867023. 8. Ali, R.B., Atangwho, I.J., Kaur, N., Ahmad, M., Mahmud, R., Asmawi, M.Z. In vitro and in vivo effects of standardized extract and fractions of Phaleria macrocarpa fruits pericarp on lead carbohydrate digesting enzymes. BMC Complement Altern Med 2013; 13:39. 9. Widowati, L., Pudjiastuti, Nuratmi, B. Uji Toksisitas Akut Ekstrak Mahkota Dewa pada Hewan Coba. Media Litbang Kesehatan 2005; 15(1). 10. Widowati, L., Nugroho, Y.A., Murhandini, S. Uji Mutagenitas Ekstrak Etanol Mahkota Dewa (Phaleria macrocarpa (Scheeh.) Boerl.). Media Litbang Kesehatan 2006; 16(3). 11. Lay, M.M., Karsani, S.A., Mohajer, S., Abd Malek, S.N. Phytochemical constituents, nutritional values, phenolics, flavonols, flavonoids, antioxidant and cytotoxicity studies on Phaleria macrocarpa (Scheff.) Boerl fruits. BMC Complement Altern Med 2014; 8(14):152. 12. Juita, N. Aktifitas Antibakteri Daun Mahkota Dewa (Phaleria macrocarpa (Scheff.) Boerl.) Terhadap Bakteri P. aeruginosa dan Bacillus cereus Dengan Metode Difusi Agar. Fakultas Farmasi Universitas Padjajaran, Bandung 2004. 13. Wahyuningsih, M.S.H., Mubarika, S., Ganjar, I.G., Hamann, M.T.,Wahyuono, S. Phalerin, glukosida benzofenon baru diisolasi dari ekstrak metanolik daun Mahkota Dewa [Phaleria macrocarpa (scheff). Boerl.] Phalerin, a new benzophenoic glucoside isolated from the methanolic extract of Mahkota Dewa [Phaleria macrocarpa (scheff). Boerl.] leaves. Majalah Farmasi Indonesia 2005; 16(1). 14. Fariza, N.I., Fadzureena, J., Zunoliza, A., Chuah, A.L., Pin, K.Y., Adawiyah, I. Anti-inflamatory Activity of the Mayor Compound from Methanol Extract of Phaleria macrocarpa Leaves. J of App Scie 2012; 12(11): 1195-1198. 15. Sugiwati, S., Setiasih, S., Afifah, E. Antihyperglycemic activity of the mahkota dewa leaf extracts as an alpha-glucosidase inhibitor. J Logika 2009;13(2):74-78. 16. Nadri, M.H., Salim, Y., Basar, N., Yahya, A., Zulkifli, R.M. Antioxidant activities and tyrosinase inhibition effects of Phaleria macrocarpa extracts. Afr J Tradit Complement Altern Med 2014; 11(3):107-11. 17. Tone, D.S., Wuisan, J., Mambo, C. Uji Efek Analgesik Ekstrak Daun Mahkota Dewa (Phaleria macrocarpa) pada Mencit (Mus musculus) Jurnal e-Biomedik (eBM) 2013; 1(2):873-878. 18. Ghufron, M., Soesatyo, M.M., Haryana, Sismindari. The effects of Ethanol extract isolated from Phaleria macrocarpha on NK1.1 activity. Berkala Ilmu Kedokteran 2008; 40:109-118. 19. Liu, B.F., Miyata, S., Kojima, H., Uriuhara, A., Kusunoki, H., Suzuki, K., Kasuga, M. Low phagocytic activity of resident peritoneal macrophages in diabetic mice: relevance to the formation of advanced glycation end products. Diabetes 1999; 48(10):2074-82. 20. Friggeri, A., Yang, Y., Banerjee, S., Yong-Jun, P., Liu, J., Abraham, E. HMGB1 inhibits macrophage activity in efferocytosis through binding to the αvβ3-integrin. Am J Physiol Cell Physiol 2010; 299(6):C1267-76. 21. Khanna, S., Biswas, S., Shang, Y., Collard, E., Azad, A., Kauh, C., Bhasker, V., Gordillo, G.M., Sen, C.K., Roy, S. Macrophage dysfunction impairs resolution of inflammation in the wounds of diabetic mice. PloS one 2010; 5(3):e9539. 22. Hardie, D.G. AMPK: a target for drugs and natural products with effects on both diabetes and cancer. Diabetes 2013; 62(7):2164-72. 23. Hardie, D.G. AMP-activated protein kinase: a key regulator of energy balance with many roles in human disease. 2014. J Intern Med 2014; 276(6):543-59. 24. Bae, H.B., Zmijewski, J.W., Deshane, J.S., Tadie, J.M., Chaplin, D.D., Takashima, S., Abraham, E. AMP-activated protein kinase enhances the phagocytic ability of macrophages and neutrophils. FASEB J 2011; 25(12):4358-68. 25. Jiang, S., Park, D.W., Stigler, W.S., Creighton, J., Ravi, S., Darley-Usmar, V., Zmijewski, J.W. Mitochondria and AMP-activated protein kinase-dependent mechanism of efferocytosis. J Biol Chem 2013; 288(36):26013-26. 26. Shalhoub, J., Falck-Hansen, M.A., Davies, A.H., Monaco, C. Innate immunity and monocyte-macrophage activation in atherosclerosis. J Inflamm (Lond) 2011; 28;8:9. 27. Hayashi, A., Ohnishi, H., Okazawa, H., Nakazawa, S., Ikeda, H., Motegi, S., Aoki, N., Kimura, S., Mikuni, M., Matozaki, T. Positive regulation of phagocytosis by SIRPbeta and its signaling mechanism in macrophages. J Biol Chem 2004; 9;279(28):29450-60. 28. Swanson, J.A., Johnson, M.T., Beningo, K., Post, P., Mooseker, M., Araki, N. A contractile activity that closes phagosomes in macrophages. J Cell Sci 1999; 112 ( Pt 3):307-16. 29. Diakonova, M., Bokoch, G. Swanson, J.A. Dynamics of Cytoskeletal Proteins during Fcγ Receptor-mediated Phagocytosis in Macrophages. Mol Biol Cell 2002; 13: 402–411. 30. Castellano, F., Montcourrier, P., Chavrier, P. Membrane recruitment of Rac1 triggers phagocytosis. J Cell Sci 2000; 113 ( Pt 17):2955-61. 31. Kuiper, J.W., Pluk, H., Oerlemans, F., van Leeuwen, F.N., de Lange, F., Fransen, J., Wieringa, B. Creatine kinase-mediated ATP supply fuels actin-based events in phagocytosis. PLoS Biol 2008; 11;6(3):e51. 32. Mosser, D.M., Edwards, J.P. Exploring the full spectrum of macrophage activation. Nat Rev Immunol 2008; 8(12):958-69. 33. Shapiro, H., Lutaty, A., Ariel, A. Macrophages, Meta-Inflammation, and Immuno-Metabolism. Sci World J 2011; 11: 2509–2529. 34. Kamal, S., Ghufron, M., Susilowati, R. The Effect of Ethanolic Extract Salf from Mahkota Dewa Leaf (Phaleria macrocarpa Scheff Boerl) on Skin Wound Healing of Diabetic Rat Model. Fakultas Kedokteran Universitas Gadjah Mada, Yogyakarta 2015. 35. Zhang, X., Goncalves, R., Mosser, D.M. The Isolation and Characterization of Murine Macrophages. Curr Protoc Immunol 2008; Chapter : Unit–14.1. 36. Italiani, P., Boraschi, D. From Monocytes to M1/M2 Macrophages: Phenotypical vs. Functional Differentiation. Front Immunol 2014; 17(5):514. 37. Hattori, Y., Hattori, K., Hayashi, T. Pleiotropic benefits of metformin: macrophage targeting its anti-inflammatory mechanisms. Diabetes 2015; 64(6):1907-9. 38. Choi, H.J., Jang, H.J., Chung, T.W., Jeong, S.I., Cha, J., Choi, J.Y., Han, C.W., Jang, Y.S., Joo, M., Jeong, H.S., Ha, K.T. Catalpol suppresses advanced glycation end-products-induced inflammatory responses through inhibition of reactive oxygen species in human monocytic THP-1 cells. Fitoterapia 2013; 86:19-28. 39. Jin, X., Yao, T., Zhou, Z., Zhu, J. Zhang, S., Hu, W., Shen, C. Advanced Glycation End Products Enhance Macrophages Polarization into M1 Phenotype through Activating RAGE/NF-κB Pathway. Biomed Res Int 2015; 732450. 40. Zhou, D., Huang, C., Lin, Z., Zhan, S., Kong, L., Fang, C., Li, J. Macrophage polarization and function with emphasis on the evolving roles of coordinated regulation of cellular signaling pathways. Cell Signal 2014; 26(2):192-7.



DOI: https://doi.org/10.19106/JMedSci005002201802

Article Metrics

Abstract views : 2489 | views : 2706




Copyright (c) 2018 Ira Cinta Lestari, Muhammad Ghufron, Sri Herwiyanti, Yustina Andwi Ari Sumiwi

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.