Ade Apon Nurhidayat
* Corresponding Author Anatomical Pathology Department, Faculty of Medicine, Universitas Padjadjaran/Hasan Sadikin General Hospital, Bandung, Indonesia Indonesia
. Afiati Anatomical Pathology Department, Faculty of Medicine, Universitas Padjadjaran/Hasan Sadikin General Hospital, Bandung, Indonesia Indonesia
Hermin Aminah Usman Anatomical Pathology Department, Faculty of Medicine, Universitas Padjadjaran/Hasan Sadikin General Hospital, Bandung, Indonesia Indonesia
Bethy Suryawathy Hernowo Anatomical Pathology Department, Faculty of Medicine, Universitas Padjadjaran/Hasan Sadikin General Hospital, Bandung, Indonesia Indonesia
(1) Anatomical Pathology Department, Faculty of Medicine, Universitas Padjadjaran/Hasan Sadikin General Hospital, Bandung, Indonesia (2) Anatomical Pathology Department, Faculty of Medicine, Universitas Padjadjaran/Hasan Sadikin General Hospital, Bandung, Indonesia (3) Anatomical Pathology Department, Faculty of Medicine, Universitas Padjadjaran/Hasan Sadikin General Hospital, Bandung, Indonesia (4) Anatomical Pathology Department, Faculty of Medicine, Universitas Padjadjaran/Hasan Sadikin General Hospital, Bandung, Indonesia (*) Corresponding Author
Abstract
Nasopharyngeal carcinoma (NPC) has a high incidence and mortality rate in Southeast Asia included in Indonesia. Radioresistance is a major obstacle for a successful treatment of NPC. DNA repair in the cell cycle and angiogenesis factors affect the response of tumor cells to radiotherapy. Cyclin D1 that functions in the cell cycle process and vascular endothelial growth factor (VEGF) as an angiogenesis factor are considered to play a role in the occurrence of radioresistance. The objective of this study was to evaluate the association between cyclin D1 and VEGF expressions with radiotherapy response in undifferentiated NPC. This study used a retrospective case control analysis design. Secondary data from medical records of patients diagnosed as undifferentiated NPC who received a complete radiotherapy at the Department of Radiation Oncology, Dr. Hasan Sadikin General Hospital, Bandung. There were 44 samples divided into radiosensitive (22 samples) and radioresistant (22 samples) groups. Immunohistochemical examination of cyclin D1 and VEGF expressions was performed on paraffin blocks of patients’ nasopharyngeal biopsy. Data analysis used Chi-Square test with p ≤0.05. Cyclin D1 was expressed strongly in 86.4% of the radioresistant group and 59.1% in the radiosensitive group (p<0.05), VEGF was strongly expressed in 77.3% of the radioresistant group and 54.5% in the radiosensitive group (p>0.05). In conclusion, there is significant association between cyclin D1 expression with radiotherapy response in undifferentiated NPC. However, there is no association between VEGF expression with radiotherapy response.
Petersson F. Nasopharyngeal carcinoma : A review. Seminars in Diagnostic Pathology. 2015:1-20. http://dx.doi.org/10.1053/j.semdp.2015.02.021 2. Torre L, Bray F, Siegel R, Ferlay J, Tieulent J, Jemal A. Global Cancer Statistics, 2012. Ca Cancer J Clin. 2015;65:87-108. http://dx.doi.org/ 10.3322/caac.21262 3. Adham M, Kurniawan AN, Muhtadi AI et al. Nasopharyngeal Carcinoma in Indonesia: epidemiology, incidence, signs, and symptoms at presentation. Chin J Cancer. 2012;31(4):185-96. http://dx.doi.org/ 10.5732/cjc.011.10328 4. Zhang L, Chen QY, Liu H, Tang LQ, Mai HQ. Emerging treatment options for nasopharyngeal carcinoma. Drug Design, Development and Therapy. 2013;7:37-52. http://dx.doi.org/10.2147/DDDT.S30753 5. Yang S, Chen J, Guo Y et al. Identification of prognostic biomarkers for response to radiotherapy by DNA microarray in nasopharyngeal carcinoma patients. Inter Jour Oncol. 2012;40:1590-100. http://dx.doi.org/10.3892/ijo.2012.1341 6. Lin H, Chen ZT, Zhu XD et al. Serum CD166: A novel biomarker for predicting nasopharyngeal carcinoma response to radiotherapy. Oncotarget. 2017:1-10. http://dx.doi.org/10.18632/oncotarget.16399 7. Feng XP, Yi H, Li MY et al. Identification of Biomarkers for Predicting Nasopharyngeal Carcinoma Response to Radiotherapy by Proteomics. Cancer Res. 2010:3450-62. http://dx.doi.org/ 10.1158/0008-5472.CAN-09-4099 8. White L. Predictive Biomarkers of Cellular Radiosensitivity for Clinical Radiotherapy Treatment (Doctoral Thesis). Dublin Institute of Technology. 2016. http://dx.doi.org/ 10.21427/D70W2X 9. Fu SM, Xu FM, Lin SM, Liang Z, Cai JH. Association of cyclin D1 and survivin expression with sensitivity to radiotherapy in patients with nasopharyngeal carcinoma. Genet Mol Res. 2014;13:3502-9. http://dx.doi.org/10.4238/2014.February.14.6 10. Shimura T. Acquired Radioresistance of Cancer and the AKT/GSK3β/cyclinD1 Overexpression Cycle. J Radiat Res. 2011;52:539-44. http://dx.doi.org/10.1269/jrr.11098 11. Padhani AR, Ollivier L. The RECIST criteria: implications for diagnostic radiologists. The British Journal of Radiology. 2001;74:983-6. http://dx.doi.org/10.1259/bjr.74.887.740983 12. Rizzardi A, Johnson A, Vogel R et al. Quantitative comparison of immunohistochemical staining measured by digital image analysis versus pathologist visual scoring. Diagnostic Pathology. 2012;7:42. http://dx.doi.org/10.1186/1746-1596-7-42 13. Xuan SH, Zhou YG, Pan JQ, Zhu W, Xu P. Overexpression of integrin αv in the human nasopharyngeal carcinoma associated with metastasis and progression. Cancer Biomarkers. 2013;13:323-8. http://dx.doi.org/10.3233/CBM-130361 14. Shimura T, Noma N, Oikawa T et al. Activation of the AKT/cyclin D1/Cdk4 survival signaling pathway in radioresistant cancer stem cells. Oncogenesis. 2012:1-9. http://dx.doi.org/doi:10.1038/oncsis.2012.12 15. Jirawatnotai S, Hu Y, Michowski W et al. A function for cyclin D1 in DNA repair uncovered by protein interactome analyses in human cancers. Nature. 2011;474:230-3. http://dx.doi.org/10.1038/nature10155 16. Su H, Jin X, Shen L et al. Inhibition of cyclin D1 enhances sensitivity to radiotherapy and reverses epithelial to mesenchymal transition for esophageal cancer cells. Tumor Biol. 2015:1-9. http://dx.doi.org/10.1007/s13277-015-4393-z 17. Barker HE, Paget JTE, Khan A, Harrington KJ. The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence. Nature. 2015;15:409-25. http://dx.doi.org/10.1038/nrc3958 18. Hendarsih E, Oehadian A, Sumantri R, Supandiman I, Hernowo BS . Perbedaan Ekspresi Vascular Endothelial Growth Factor dan Ekspresi Tissue Factor berdasarkan Respons Terapi Kemoradiasi Cisplatin pada Penderita Karsinoma Nasofaring Stadium Lanjut. MKB. 2015:49-54. http://dx.doi.org/10.15395/mkb.v47n1.397 19. Homer JJ, Greenman J, Stafford ND. The expression of vascular endothelial growth factor (VEGF) and VEGF-C in early laryngeal cancer: relationship with radioresistance. Clin Otolaryngol. 2001;26:498-504. http://dx.doi.org/10.1046/j.1365-2273.2001.00512.x 20. Qiao N, Wang L, Wang T, Li H. Inflammatory CXCL12-CXCR4/CXCR7 axis mediates G-protein signaling pathway to influence the invasion and migration of nasopharyngeal carcinoma cells. Tumor Biol. 2016;37:8169-79. http://dx.doi.org/ 10.1007/s13277-015-4686-2 21. Wu Y, Shen Z, Wang K et al. High FMNL3 expression promotes nasopharyngeal carcinoma cell metastasis: role in TGF-β1- induced epithelia-to-mesenchymal transition. Scientific Report. 2017;7:1-14. http://dx.doi.org/ 10.1038/srep42507