Review of immune responses correlated with COVID-19 outcomes: the fight, debacle and aftermath in the Indonesian context.

https://doi.org/10.19106/JMedSciSI005203202004

Dian Eurike Septyaningtrias(1), Jajah Fachiroh(2), Dewi Kartikawati Paramita(3), Dewajani Purnomosari(4), Rina Susilowati(5*)

(1) Department of Histology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada
(2) Department of Histology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada
(3) Department of Histology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada
(4) Department of Histology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada
(5) Department of Histology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada
(*) Corresponding Author

Abstract


In the current pandemic, the highly contagious nature of the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) leads to an enormous burden for the global health care system and creates challenging socioeconomic problems. Respiratory mucosa, the main entrance of SARS-CoV-2 infection, are equipped with an innate immune defense system as the initial response against infection. Activation of the adaptive immune system facilitates viral clearance as well as providing immunological memory for prevention from subsequent exposure. However, despite repeated efforts at implementing appropriate interventions, severe and fatal cases are continuing to occur and reports of recurrent cases need clarification. Host factors may contribute to the severity of the diseases while viral immune evasion is a common phenomenon leading to severe outcomes and recurrent infection. Discussions of immunological-based tests for screening, herd immunity, along with the possible advantages or potentially futile efforts of development of vaccine and alternative immunotherapy have become a part of daily household conversations. In this review, evidence of innate and adaptive immune responses or lack of them, and immunological problems relevant for SARS-CoV-2 will be summarized. Finally, perspectives for future studies especially in the Indonesian population will be sketched.

Keywords


COVID-19; immune response; Indonesia; pandemic; SARS-CoV-2;

Full Text:

PDF


References

  1. Perlman S, Dandekar AA. Immunopathogenesis of coronavirus infections: implications for SARS. Nat Rev Immunol 2005; 5(12):917-27. https://doi.org/10.1038/nri1732
  2. Infantino M, Damiani A, Gobbi FL, Grosi V, Lari B, Macchia D, et al. Serological assays for SARS-CoV-2 infectious disease: benefits, limitations and perspectives. Isr Med Assoc J 2020; 22(4):203-10
  3. de Wit E, van Doremalen N, Falzarano D, Munster VJ. SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol 2016; 14(8):523-34. https://doi.org/10.1038/nrmicro.2016.81
  4. Zhu N, Zhang D, Wang W, Wang W, Li X, Yang B, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020; 382(8):727-33. https://doi.org/10.1056/NEJMoa2001017
  5. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579(7798):270-3. https://doi.org/10.1038/s41586-020-2012-7
  6. Xu X, Chen P, Wang J, Feng J, Zhou H, et al. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci China Life Sci 2020; 63(3):457-60. https://doi.org/10.1007/s11427-020-1637-5
  7. Forster P, Forster L, Renfrew C, Forster M. Phylogenetic network analysis of SARS-CoV-2 genomes. Proc Natl Acad Sci USA 2020; 117 (17) 9241-3. https://doi.org/10.1073/pnas.2004999117
  8. Cheung KS, Hung IF, Chan PP, Lung KC, Tso E, Liu R, et al. Gastrointestinal Manifestations of SARS-CoV-2 Infection and Virus Load in Fecal Samples from the Hong Kong Cohort and Systematic Review and Meta-analysis. Gastroenterology 2020; S0016-5085(20)30448-0. https://doi.org/10.1053/j.gastro.2020.03.065
  9. Chen Y, Chen L, Deng Q, Zang G, Wu K, Ni L, et al. The presence of SARS-CoV-2 RNA in feces of COVID-19 patients. J Med Virol 2020; 92(7):833-40. https://doi.org/10.1002/jmv.25825
  10. Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N, Herrler T, Erichen S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020; 181(2):271-80.e8. https://doi.org/10.1016/j.cell.2020.02.052
  11. Xia S, Liu M, Wang C, Xu W, Lan Q, Feng S, et al. Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Res 2020; 30(4):343-55. https://doi.org/10.1038/s41422-020-0305-x
  12. 12. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 2020; 323(11):1061-9. https://doi.org/10.1001/jama.2020.1585
  13. Shi Y, Wang Y, Shao C, Huang J, Gan J, Huang X, et al. COVID-19 infection: the perspectives on immune responses. Cell Death Differ 2020; 27(5):1451-4. https://doi.org/10.1038/s41418-020-0530-3
  14. Desforges M, Le Coupanec A, Dubeau P, Bourgouin A, LajoeiL, Dube M, et al. Human coronaviruses and other respiratory viruses: underestimated opportunistic pathogens of the central nervous system? Viruses 2019; 12(1):14. https://doi.org/10.3390/v12010014
  15. Henry BM, de Oliveira MHS, Benoit S, Plebani M, Lippi G. Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): a meta-analysis. Clin Chem Lab Med 2020. In press. https://doi.org/10.1515/cclm-2020-0369
  16. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell 2006; 124(4):783-801. https://doi.org/10.1016/j.cell.2006.02.015
  17. Prompetchara E, Ketloy C, Palaga T. Immune responses in COVID-19 and potential vaccines: lessons learned from SARS and MERS epidemic. Asian Pac J Allergy Immunol 2020; 38(1):1-9. https://doi.org/10.12932/ap-200220-0772
  18. Thevarajan I, Nguyen THO, Koutsakos M, et al. Breadth of concomitant immune responses prior to patient recovery: a case report of non-severe COVID-19. Nat Med 2020; 26(4):453-5. https://doi.org/10.1038/s41591-020-0819-2
  19. Huang C, Wang Y, Li X, Druce J, Cali L, van de Sandt CE, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223):497-506. https://doi.org/10.1016/s0140-6736(20)30183-5.
  20. He G, Sun W, Fang P, Huang J, Gamber M, et al. The clinical feature of silent infections of novel coronavirus infection (COVID-19) in Wenzhou. J Med Virol 2020; 1002/jmv.25861. https://doi.org/10.1002/jmv.25861
  21. Channappanavar R, Zhao J, Perlman S. T cell-mediated immune response to respiratory coronaviruses. Immunol Res 2014; 59(1-3):118-28. https://doi.org/10.1007/s12026-014-8534-z
  22. Liu WJ, Zhao M, Liu K, Xu K, Wong G, Tan W, et al. T-cell immunity of SARS-CoV: implications for vaccine development against MERS-CoV. Antiviral Res 2017; 137:82-92. https://doi.org/10.1016/j.antiviral.2016.11.006.
  23. Channappanavar R, Fett C, Zhao J, Meyerholz DK, Perlman S. Virus-specific memory CD8 T cells provide substantial protection from lethal severe acute respiratory syndrome coronavirus infection. J Virol 2014; 88(19):11034-44. https://doi.org/10.1128/JVI.01505-14
  24. Maloir Q, Ghysen K, von Frenckell C, Louis R, Guiot J. Acute respiratory distress revealing antisynthetase syndrome. Rev Med Liege 2018; 73(7-8):370-5.
  25. Chen J, Lau YF, Lamirande EW, PaddockCD, Bartlett JH, Zaki SR, et al. Cellular immune responses to severe acute respiratory syndrome coronavirus (SARS-CoV) infection in senescent BALB/c mice: CD4+ T cells are important in control of SARS-CoV infection. J Virol 2010; 84(3):1289-301. https://doi.org/10.1128/jvi.01281-09
  26. Li CK, Wu H, Yan H, Ma S, Wang L, Zhang M, et al. T cell responses to whole SARS coronavirus in humans. J Immunol 2008; 181(8):5490-500. https://doi.org/10.4049/jimmunol.181.8.5490.
  27. Hsueh PR, Huang LM, Chen PJ, Kao CL, Yang PC. Chronological evolution of IgM, IgA, IgG and neutralisation antibodies after infection with SARS-associated coronavirus. Clin Microbiol Infect 2004; 10(12):1062-6. https://doi.org/10.1111/j.1469-0691.2004.01009.x
  28. Haveri A, Smura T, Kuivanen S, Osterlund P, Hepojoki J, Ikonen N, et al. Serological and molecular findings during SARS-CoV-2 infection: the first case study in Finland, January to February 2020. Euro Surveill 2020; 25(11):2000266. https://doi.org/10.2807/1560-7917.Es.2020.25.11.2000266
  29. Mo H, Zeng G, Ren X, Li H, Ke C, Tan Y, et al. Longitudinal profile of antibodies against SARS-coronavirus in SARS patients and their clinical significance. Respirology 2006; 11(1):49-53. https://doi.org/10.1111/j.1440-1843.2006.00783.x
  30. Wu X, Fu B, Chen L, Feng Y. Serological tests facilitate identification of asymptomatic SARS-CoV-2 infection in Wuhan, China. J Med Virol 2020; 10.1002/jmv.25904. https://doi.org/10.1002/jmv.25904
  31. Liu W, Fontanet A, Zhang PH, Zhan L, Xin ZT, Baril L, et al. Two-year prospective study of the humoral immune response of patients with severe acute respiratory syndrome. J Infect Dis 2006; 193(6):792-5. https://doi.org/10.1086/500469
  32. Tang F, Quan Y, Xin ZT, Wrammert J, Ma MJ, Lv H, et al. Lack of peripheral memory B cell responses in recovered patients with severe acute respiratory syndrome: a six-year follow-up study. J Immunol 2011; 186(12):7264-8. https://doi.org/10.4049/jimmunol.0903490
  33. Woo PC, Lau SK, Wong BH, Chan KH, Chu CM, Tsoi HW, et al. Longitudinal profile of immunoglobulin G (IgG), IgM, and IgA antibodies against the severe acute respiratory syndrome (SARS) coronavirus nucleocapsid protein in patients with pneumonia due to the SARS coronavirus. Clin Diagn Lab Immunol 2004; 11(4):665-8. https://doi.org/10.1128/cdli.11.4.665-668.2004
  34. Duffy S, Shackelton LA, Holmes EC. Rates of evolutionary change in viruses: patterns and determinants. Nat Rev Genet 2008; 9(4):267-76. https://doi.org/10.1038/nrg2323
  35. Knoops K, Kikkert M, Worm SH, Zevenhoven-Dobbe JC, van der Mer Y, Koster AJ, et al. SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum. PLoS Biol 2008; 6(9):e226. https://doi.org/10.1371/journal.pbio.0060226
  36. Züst R, Cervantes-Barragan L, Habjan M, Maier R, Nauman BW, Ziebuhr J, et al. Ribose 2’-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5. Nat Immunol 2011; 12(2):137-43. https://doi.org/10.1038/ni.1979
  37. Kindler E, Gil-Cruz C, Spanier J, Li J, Wilhelm J, Rabouw HH, et al. Early endonuclease-mediated evasion of RNA sensing ensures efficient coronavirus replication. PLoS Pathog 2017; 13(2):e1006195. https://doi.org/10.1371/journal.ppat.1006195
  38. Kamitani W, Huang C, Narayanan K, Lokugamage KG, Makino S. A two-pronged strategy to suppress host protein synthesis by SARS coronavirus Nsp1 protein. Nat Struct Mol Biol 2009; 16(11):1134-40. https://doi.org/10.1038/nsmb.1680
  39. Kamitani W, Narayanan K, Huang C, Lokugamage K, Ikegami T, Ito N, et al. Severe acute respiratory syndrome coronavirus nsp1 protein suppresses host gene expression by promoting host mRNA degradation. Proc Natl Acad Sci U S A 2006; 103(34):12885-90. https://doi.org/10.1073/pnas.0603144103
  40. Onomoto K, Jogi M, Yoo JS, Narita R, Morimoto S, Takemura A, et al. Critical role of an antiviral stress granule containing RIG-I and PKR in viral detection and innate immunity. PLoS One 2012; 7(8):e43031. https://doi.org/10.1371/journal.pone.0043031
  41. Menachery VD, Eisfeld AJ, Schäfer A, Josset L, Sims AC, Proll S, et al. Pathogenic influenza viruses and coronaviruses utilize similar and contrasting approaches to control interferon-stimulated gene responses. mBio. 2014; 5(3):e01174-14. https://doi.org/10.1128/mBio.01174-14
  42. Wathelet MG, Orr M, Frieman MB, Baric RS. Severe acute respiratory syndrome coronavirus evades antiviral signaling: role of nsp1 and rational design of an attenuated strain. J Virol 2007; 81(21):11620-33. https://doi.org/10.1128/jvi.00702-07
  43. Zhou J, Chu H, Li C, Wong BHY, Cheng HS, Kwok-Men V, et al. Active replication of Middle East respiratory syndrome coronavirus and aberrant induction of inflammatory cytokines and chemokines in human macrophages: implications for pathogenesis. J Infect Dis 2014; 209(9):1331-42. https://doi.org/10.1093/infdis/jit504
  44. Josset L, Menachery VD, Gralinski LE, AgnihothramS, Sova P, Carter VS, et al. Cell host response to infection with novel human coronavirus EMC predicts potential antivirals and important differences with SARS coronavirus. mBio. 2013; 4(3):e00165-13. https://doi.org/10.1128/mBio.00165-13
  45. Chu H, Zhou J, Wong BH, Li C, Chan JFW, Cheng ZS, et al. Middle East respiratory syndrome coronavirus efficiently infects human primary T lymphocytes and activates the extrinsic and intrinsic apoptosis pathways. J Infect Dis 2016; 213(6):904-14. https://doi.org/10.1093/infdis/jiv380
  46. Petrosillo N, Viceconte G, Ergonul O, Ippolito G, Petersen E. COVID-19, SARS and MERS: are they closely related? Clin Microbiol Infect 2020; 26(6):729-734. https://doi.org/10.1016/j.cmi.2020.03.026
  47. Tan C, Huang Y, Shi F, et al. C-reactive protein correlates with CT findings and predicts severe COVID-19 early. J Med Virol 2020; 92(7):856-62. https://doi.org/10.1002/jmv.25871
  48. Herold S, Steinmueller M, von Wulffen W, Cakarova L, Pinto R, Pleschka S,et al. Lung epithelial apoptosis in influenza virus pneumonia: the role of macrophage-expressed TNF-related apoptosis-inducing ligand. J Exp Med 2008; 205(13):3065-77. https://doi.org/10.1084/jem.20080201
  49. Tian S, Hu W, Niu L, Liu H, Xu H, Xiao SY. Pulmonary pathology of early-phase 2019 novel coronavirus (COVID-19) pneumonia in two patients with lung cancer. J Thorac Oncol 2020; 15(5):700-4. https://doi.org/10.1016/j.jtho.2020.02.010
  50. Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med 2020; 8(4):420-2. https://doi.org/10.1016/s2213-2600(20)30076-x
  51. Frieman MB, Chen J, Morrison TE, Whitmore A, Funkhouser W, Ward JM, et al. SARS-CoV pathogenesis is regulated by a STAT1 dependent but a type I, II and III interferon receptor independent mechanism. PLoS Pathog 2010; 6(4):e1000849. https://doi.org/10.1371/journal.ppat.1000849
  52. Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin Infect Dis 2020; ciaa248. https://doi.org/10.1093/cid/ciaa248
  53. Liu Q, Zhou YH, Yang ZQ. The cytokine storm of severe influenza and development of immunomodulatory therapy. Cell Mol Immunol 2016; 13(1):3-10. https://doi.org/10.1038/cmi.2015.74
  54. Zheng M, Gao Y, Wang G, Song G, Liu S, Sun D, et al. Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cell Mol Immunol 2020; 17:533-5. https://doi.org/10.1038/s41423-020-0402-2
  55. Sainz B, Jr., Mossel EC, Peters CJ, Garry RF. Interferon-beta and interferon-gamma synergistically inhibit the replication of severe acute respiratory syndrome-associated coronavirus (SARS-CoV). Virology 2004; 329(1):11-7. https://doi.org/10.1016/j.virol.2004.08.011
  56. Li F, Wei H, Wei H, Gao Y, Xu L, Yin W, et al. Blocking the natural killer cell inhibitory receptor NKG2A increases activity of human natural killer cells and clears hepatitis B virus infection in mice. Gastroenterology 2013; 144(2):392-401. https://doi.org/10.1053/j.gastro.2012.10.039
  57. Sawant DV, Yano H, Chikina M, Zhang Q, Liao M, Liu C, et al. Adaptive plasticity of IL-10(+) and IL-35(+) T(reg) cells cooperatively promotes tumor T cell exhaustion. Nat Immunol 2019; 20(6):724-35. https://doi.org/10.1038/s41590-019-0346-9
  58. Brooks DG, Trifilo MJ, Edelmann KH, Teyton L, McGavern DB, Oldstone MB. Interleukin-10 determines viral clearance or persistence in vivo. Nat Med 2006; 12(11):1301-9. https://doi.org/10.1038/nm1492.
  59. Jin Y, Yang H, Ji W, Wu W, Chen S, Zhang W, et al. Virology, epidemiology, pathogenesis, and control of COVID-19. Viruses 2020; 12(4):372. https://doi.org/10.3390/v12040372
  60. Liu L, Wei Q, Lin Q, Fang J, Wang H, Kwok H, et al. Anti-spike IgG causes severe acute lung injury by skewing macrophage responses during acute SARS-CoV infection. JCI Insight 2019; 4(4):e123158. https://doi.org/10.1172/jci.insight.123158
  61. Short KR, Kedzierska K, van de Sandt CE. Back to the future: lessons learned from the 1918 influenza pandemic. Front Cell Infect Microbiol 2018; 8:343. https://doi.org/10.3389/fcimb.2018.00343
  62. Shi Y, Yu X, Zhao H, Wang H, Zhao R, Sheng J. Host susceptibility to severe COVID-19 and establishment of a host risk score: findings of 487 cases outside Wuhan. Crit Care 2020; 24(1):108. https://doi.org/10.1186/s13054-020-2833-7
  63. Saghazadeh A, Rezaei N. Immune-epidemiological parameters of the novel coronavirus - a perspective. Expert Rev Clin Immunol 2020; 0(0):1-6. https://doi.org/10.1080/1744666x.2020.1750954
  64. Cristiani L, Mancino E, Matera L, Nenna R, Pierangeli A, Scagnorali C, et al. Will children reveal their secret? The coronavirus dilemma. Eur Respir J 2020; 55(4):2000749. https://doi.org/10.1183/13993003.00749-2020
  65. Chan-Yeung M, Xu RH. SARS: epidemiology. Respirology. 2003; 8(Suppl 1):S9-14. https://doi.org/10.1046/j.1440-1843.2003.00518.x
  66. Clay CC, Donart N, Fomukong N, Knight JB, Overheim K, Tipper J, et al. Severe acute respiratory syndrome-coronavirus infection in aged nonhuman primates is associated with modulated pulmonary and systemic immune responses. Immun Ageing 2014; 11(1):4. https://doi.org/10.1186/1742-4933-11-4
  67. Li T, Zhang Y, Gong C, Wang J, Liu B, Shi L, et al. Prevalence of malnutrition and analysis of related factors in elderly patients with COVID-19 in Wuhan, China. Eur J Clin Nutr 2020; 74(6):871-5. https://doi.org/10.1038/s41430-020-0642-3.
  68. Richner JM, Gmyrek GB, Govero J, Tu W, van der Windt GJW, Metcalf TU, et al. Age-dependent cell trafficking defects in draining lymph nodes impair adaptive immunity and control of West Nile virus infection. PLoS Pathog 2015; 11(7):e1005027. https://doi.org/10.1371/journal.ppat.1005027
  69. Xie J, Tong Z, Guan X, Du B, Qiu H. Clinical characteristics of patients who died of coronavirus disease 2019 in China. JAMA Netw Open 2020; 3(4):e205619. https://doi.org/10.1001/jamanetworkopen.2020.5619
  70. The Guardian. Men die of coronavirus at twice women’s rate in England and Wales. The Guardian. 2020 April 16 [cited 2020 April 20]. Available from: https://www.theguardian.com/world/2020/apr/16/men-die-of-coronavirus-at-twice-womens-rate-in-england-and-wales.
  71. Worldometer. Age, sex, existing conditions of COVID-19 cases and deaths. Worldometer. 2020 April 21 [cited 2020 April 23]. Available from: https://www.worldometers.info/coronavirus/coronavirus-age-sex-demographics/.
  72. Karlberg J, Chong DS, Lai WY. Do men have a higher case fatality rate of severe acute respiratory syndrome than women do? Am J Epidemiol 2004; 159(3):229-31. https://doi.org/10.1093/aje/kwh056
  73. Alghamdi IG, Hussain, II, Almalki SS, Alghamdi MS, Alghamdi MM, El-Sheemy MA. The pattern of Middle East respiratory syndrome coronavirus in Saudi Arabia: a descriptive epidemiological analysis of data from the Saudi Ministry of Health. Int J Gen Med 2014; 7:417-23. https://doi.org/10.2147/IJGM.S67061
  74. Conti P, Younes A. Coronavirus COV-19/SARS-CoV-2 affects women less than men: clinical response to viral infection. J Biol Regul Homeost Agents 2020; 34(2). https://doi.org/10.23812/Editorial-Conti-3
  75. Laffont S, Rouquié N, Azar P, Seillet C, Plumas J, Aspord C, et al. X-Chromosome complement and estrogen receptor signaling independently contribute to the enhanced TLR7-mediated IFN-α production of plasmacytoid dendritic cells from women. J Immunol 2014; 193(11):5444-52. https://doi.org/10.4049/jimmunol.1303400
  76. Channappanavar R, Fett C, Mack M, Ten Eyck PP, Meyerholz DK, Perlman S. Sex-based differences in susceptibility to severe acute respiratory syndrome coronavirus infection. J Immunol 2017; 198(10):4046-53. https://doi.org/10.4049/jimmunol.1601896
  77. Klonoff DC, Umpierrez GE. COVID-19 in patients with diabetes: risk factors that increase morbidity. Metabolism 2020; 154224. https://doi.org/10.1016/j.metabol.2020.154224.
  78. Fang L, Karakiulakis G, Roth M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir Med 2020; 8(4):e21. https://doi.org/10.1016/s2213-2600(20)30116-8
  79. Shen XZ, Xiao HD, Li P, Billet S, Lin CX, Fuchs S, et al. Tissue specific expression of angiotensin converting enzyme: a new way to study an old friend. Int Immunopharmacol 2008; 8(2):171-6. https://doi.org/10.1016/j.intimp.2007.08.010
  80. Butler MJ, Barrientos RM. The impact of nutrition on COVID-19 susceptibility and long-term consequences. Brain BehavImmun 2020; S0889-1591(20)30537-https://doi.org/10.1016/j.bbi.2020.04.040
  81. Minotti C, Tirelli F, Barbieri E, Giaquinto C, Donà D. How is immunosuppressive status affecting children and adults in SARS-CoV-2 infection? A systematic review. J Infect 2020; In press. https://doi.org/10.1016/j.jinf.2020.04.026
  82. Ng OW, Chia A, Tan AT, JadiRS, Leong HN, Bertoletti A, et al. Memory T cell responses targeting the SARS coronavirus persist up to 11 years post-infection. Vaccine 2016; 34(17):2008-14. https://doi.org/10.1016/j.vaccine.2016.02.063
  83. Metcalf CJE, Ferrari M, Graham AL, Grenfell BT. Understanding herd immunity. Trends Immunol 2015; 36(12):753-5. https://doi.org/10.1016/j.it.2015.10.004
  84. Lan L, Xu D, Ye G, Xia C, Wang S, Li Y, et al. Positive RT-PCR test results in patients recovered from COVID-19. JAMA 2020; 323(15):1502-3. https://doi.org/10.1001/jama.2020.2783
  85. Lan J, Ge J, Yu J, San S, Zhou H, Fan S, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 2020; 581:215-20. https://doi.org/10.1038/s41586-020-2180-5
  86. Amanat F, Krammer F. SARS-CoV-2 vaccines: status report. Immunity 2020; 52(4):583-9. https://doi.org/10.1016/j.immuni.2020.03.007
  87. Thanh Le T, Andreadakis Z, Kumar A, Roman RJ, Tollefsen S, Saville M, et al. The COVID-19 vaccine development landscape. Nat Rev Drug Discov 2020; 19(5):305-6. https://doi.org/10.1038/d41573-020-00073-5
  88. Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines - a new era in vaccinology. Nat Rev Drug Discov 2018; 17(4):261-79. https://doi.org/10.1038/nrd.2017.243
  89. Tseng CT, Sbrana E, Iwata-Yoshikawa N, Newman PC, Garron T, Atmar RL, et al. Immunization with SARS coronavirus vaccines leads to pulmonary immunopathology on challenge with the SARS virus. PLoS One 2012; 7(4):e35421. https://doi.org/10.1371/journal.pone.0035421
  90. Wang Q, Zhang L, Kuwahara K, Li L, Liu Z, Li T, et al. Immunodominant SARS coronavirus epitopes in humans elicited both enhancing and neutralizing effects on infection in non-human primates. ACS Infect Dis 2016; 2(5):361-76. https://doi.org/10.1021/acsinfecdis.6b00006
  91. Sambhara S, McElhaney JE. Immunosenescence and influenza vaccine efficacy. Curr Top Microbiol Immunol 2009; 333:413-29. https://doi.org/10.1007/978-3-540-92165-3_20
  92. Cheng Y, Wong R, Soo YO, Wong WS, Lee CK, Ng MHL, et al. Use of convalescent plasma therapy in SARS patients in Hong Kong. Eur J Clin Microbiol Infect Dis 2005; 24(1):44-6. https://doi.org/10.1007/s10096-004-1271-9
  93. Duan K, Liu B, Li C, Zhang H, Yu T, Qu J, et al. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proc Natl Acad Sci USA 2020; 117 (17):9490-6. https://doi.org/10.1073/pnas.2004168117
  94. Cao W, Liu X, Bai T, Fan H, Hong K, Song H, et al. High-dose intravenous immunoglobulin as a therapeutic option for deteriorating patients with coronavirus disease 2019. Open Forum Infect Dis 2020; 7(3):ofaa102. https://doi.org/10.1093/ofid/ofaa102.
  95. Leng Z, Zhu R, Hou W, Feng Y, Yang Y, Han Q, et al. Transplantation of ACE2(-) mesenchymal stem cells improves the outcome of patients with COVID-19 pneumonia. Aging Dis 2020; 11(2):216-28. https://doi.org/10.14336/ad.2020.0228
  96. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet 2020; 395(10229):1033-4. https://doi.org/10.1016/s0140-6736(20)30628-0
  97. Moorlag S, Arts RJW, van Crevel R, Netea MG. Non-specific effects of BCG vaccine on viral infections. Clin Microbiol Infect 2019; 25(12):1473-8. https://doi.org/10.1016/j.cmi.2019.04.020
  98. Staats P, Giannakopoulos G, Blake J, Liebler E, Levy RM. The use of non-invasive vagusnerve stimulation to treat respiratory symptoms associated with COVID-19: atheoretical hypothesis and early clinical experience. Neuromodulation 2020. https://doi.org/10.1111/ner.13172
  99. Yang Y, Islam MS, Wang J, Li Y, Chen X. Traditional Chinese medicine in the treatment of patients infected with 2019-new coronavirus (SARS-CoV-2): a review and perspective. Int J Biol Sci 2020; 16(10):1708-17. https://doi.org/10.7150/ijbs.45538
  100. Qi Y, Gao F, Hou L, Wan C. Anti-inflammatory and immunostimulatory activities of Astragalosides. Am J Chin Med 2017; 45(6):1157-67. https://doi.org/10.1142/s0192415x1750063x
  101. Kissler SM, Tedijanto C, Goldstein E, Grad YH, Lipsitch M. Projecting the transmission dynamics of SARS-CoV-2 through the postpandemic period. Science 2020; 368(6493):860-8. https://doi.org/10.1126/science.abb5793
  102. Zhou Y, Han T, Chen J, Hou C, Hua L, He S, et al. Clinical and autoimmune characteristics of severe and critical cases with COVID-19. Clin Transl Sci 2020. 10.1111/cts.12805. https://doi.org/10.1111/cts.12805
  103. Savarin C, Bergmann CC, Gaignage M, Stohlman SA. Self-reactive CD4(+) T cells activated during viral-induced demyelination do not prevent clinical recovery. J Neuroinflammation2015; 12:207. https://doi.org/10.1186/s12974-015-0426-1
  104. Tun MH, Tun HM, Mahoney JJ, Konya TB, Guttman GS, Becker AB, et al. Postnatal exposure to household disinfectants, infant gut microbiota and subsequent risk of overweight in children. CMAJ 2018; 190(37):E1097-e107. https://doi.org/10.1503/cmaj.170809
  105. Kim SW, Su KP. Using psychoneuroimmunity against COVID-19. Brain BehavImmun 2020; S0889-1591(20)30391-3. https://doi.org/10.1016/j.bbi.2020.03.025



DOI: https://doi.org/10.19106/JMedSciSI005203202004

Article Metrics

Abstract views : 6719 | views : 6007




Copyright (c) 2020 Dian Eurike Septyaningtrias, Jajah Fachiroh, Dewi Kartikawati Paramita, Dewajani Purnomosari, Rina Susilowati

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.