Effects of 7-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-chroman-4-one on serum levels of antioxidant enzymes in hyperlipidemic rats

https://doi.org/10.19106/JMedSci005502202301

. Prasetyastuti(1*), Noviyanty Indjar Gama(2)

(1) Department of Biochemistry, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta
(2) Faculty of Pharmacy, Universitas Mulawarman, Samarinda
(*) Corresponding Author

Abstract


Hyperlipidemia triggers oxidative stress caused by an imbalance between oxidant and antioxidant levels due to the excess production of reactive oxygen species (ROS). The increase of ROS can decrease antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). 7-OH-2-(4-OH-3-Methoxyphenyl)-chroman-4-one is exogenous antioxidants isolated from mahogany seeds (Swietenia macrophylla King). This study aimed to evaluate the effects of the 7-OH-2-(4-OH-3-methoxyphenyl)-chroman-4-one on serum levels of SOD, CAT, and GPx in hyperglycemic rats. Thirty-six male Wistar rats (Rattus norvegicus) were divided into the following six groups: (N) normal group, (HL) hyperlipidemia group, (P) hyperlipidemia group with simvastatin, F10, F30, and F90 hyperlipidemia group with 7-OH-2-(4-OH-3-methoxyphenyl)-chroman-4-one 10, 30 and 90 mg/200g body weight (BW), respectively.  Hyperlipidemia was induced by feed enriched with cholesterol and cholic acid. Treatments were administered orally by gavages. After 4 weeks of treatments, blood sample was drawn and serum levels of SOD, CAT, and GPx enzymes were analyzed using a spectrophotometric method. Serum levels of SOD, CAT, and GPx in hyperlipidemic rats treated with 7-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-chroman-4-one at dose 10, 30 and 90 mg/200g BW were higher than HL group. In addition, no significantly different on serum SOD and CAT between group F90 and group P was observed (p>0.05)


Full Text:

PDF


References

1.Rasool Hassan BA. Overview on hyperlipidemia. J Chromat Separation Techniq 2013; 04(03):e113.
https://www.longdom.org/open-access-pdfs/overview-on-hyperlipidemia-2157-7064.1000e113.pdf
2.Hill MF, Bordoni B. Hyperlipidemia. StatPearls Publishing 2022;
3.Kaliora AC, Dedoussis GVZ, Schmidt H. Dietary antioxidants in preventing atherogenesis. Atherosclerosis 2006; 187(1):1-17.
https://doi.org/10.1016/j.atherosclerosis.2005.11.001
4.Juan CA, de la Lastra JMP, Plou FJ, Pérez-Lebeña E. The chemistry of reactive oxygen species (ROS) revisited: outlining their role in biological macromolecules (DNA, Lipids and Proteins) and induced pathologies. Int J Mol Sci 2021; 22(9):4642.
https://doi.org/10.3390/ijms22094642
5.Rajani G, Ashok P. In vitro antioxidant and antihyperlipidemic activities of Bauhinia variegata Linn. Indian J Pharmacol 2009; 41(5):227-32.
https://doi.org/10.4103/0253-7613.58513
6.Ighodaro OM, Akinloye OA. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria J Med 2018; 54(4):287-93.
https://doi.org/10.1016/j.ajme.2017.09.001
7.Singh YP, Patel RN, Singh Y, Butcher RJ, Vishakarma PK, Singh RKB. Structure and antioxidant superoxide dismutase activity of copper (II) hydrazone complexes. Polyhedron 2017; 122:1-15.
https://doi.org/10.1016/j.poly.2016.11.013
8.Grigoras AG. Catalase immobilization—A review. Biochem Eng J 2017; 117:1-20.
https://doi.org/10.1016/j.bej.2016.10.021
9.Gebicka L, Didik J. Catalytic scavenging of peroxynitrite by catalase. J Inorg Biochem 2009; 103(10):1375-9.
https://doi.org/10.1016/j.jinorgbio.2009.07.011
10.Cardoso BR, Hare DJ, Bush AI, Roberts BR. Glutathione peroxidase 4: a new player in neurodegeneration? Mol Psychiatry 2017; 22(3):328-35.
https://doi.org/10.1038/mp.2016.196
11.Nagarthna PKM, HarshaVardhini N, Bashir B, Sridhar KM. Hyperlipidemic and its treatment: a review. J Adv Sci Res 2020; 11(1):1-6.
http://www.sciensage.info/journal/1359303580JASR_3006121.pdf
12.Moghadamtousi SZ, Goh BH, Chan CK, Shabab T, Kadir HA. Biological activities and phytochemicals of Swietenia macrophylla King. Molecules 2013; 18(9):10465-83.
https://doi.org/10.3390/molecules180910465
13.Mursiti S. Isolation of secondary metabolite compounds antihyperglycemia of mahogany seeds (Swietenia macrophylla, King [Dissertation]. Universitas Gadjah Mada, Yogyakarta; 2015.
14.Iwai K, Nakaya N, Kawasaki Y, Matsue H. Antioxidative function of natto, a kind of fermented soybeans effect on LDL oxidation and lipid metabolism in cholesterol-fed rats. J Agric Food Chem 2002; 50(12):3597-601.
https://doi.org/10.1021/jf0117199
15.Ayunda RD, Prasetyastuti, Hastuti P. Effect of 7-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-chroman-4-one on level of mangan-superoxide dismutase (Mn-sod) and superoxide dismutase 2 (SOD2) gene expression in hyperlipidemia rats. Indon J Pharm 2019; 30(3):180-6.
https://doi.org/10.14499/indonesianjpharm30iss3pp17
16.Yin H, Xu L, Porter NA. Free radical lipid peroxidation: mechanisms and analysis. Chem Rev 2011; 111(10):5944-72.
https://doi.org/10.1021/cr200084z
17.Amiya E. Interaction of hyperlipidemia and reactive oxygen species: Insights from the lipid-raft platform. World J Cardiol 2016; 8(12):689-94.
https://doi.org/10.4330/wjc.v8.i12.689
18.Yang RL, Shi YH, Hao G, Li W, Le GW. Increasing oxidative stress with progressive hyperlipidemia in human: relation between malondialdehyde and atherogenic index. J Clin Biochem Nutr 2008; 43(3):15458.
https://doi.org/10.3164/jcbn.2008044
19.Graveline D. Adverse effects of statin drugs: a physician patient’s perspective. J Am Phys Surg 2015; 20(1):7-11.
http://www.jpands.org/vol20no1/graveline.pdf
20.Gazzerro P, Proto MC, Gangemi G, Malfitano AM, Ciaglia E, Pisanti S, et al. Pharmacological actions of statins: a critical appraisal in the management of cancer. Pharmacol Rev 2012; 64(1):102-46.
https://doi.org/10.1124/pr.111.004994
21.Shattat GF. A review article on hyperlipidemia: types, treatments and new drug targets. Biomed Pharmacol J 2014; 7(2):399-409.
https://doi.org/10.13005/bpj/504
22.Wu P, Ma G, Li N, Deng Q, Yin Y, Huang R. Investigation of in vitro and in vivo antioxidant activities of flavonoid rich extract from the berries of Rhodomyrtus tomentosa (Ait.) Hassk. Food Chem 2015; 173:194-202.
https://doi.org/10.1016/j.foodchem.2014.10.023
23.Zeng Y, Song J, Zhang M, Wang H, Zhang Y, Suo H. Comparison of in vitro and in vivo antioxidant activities of six flavonoids with similar structures. Antioxidants 2020; 9(8):732.
https://doi.org/10.3390/antiox9080732
24.Sarian MN, Ahmed QU, Mat So’Ad SZ, Alhassan AM, Murugesu S, Perumal V, et al. Antioxidant and antidiabetic effects of flavonoids: a structure-activity relationship based study. BioMed Res Int 2017; 2017:8386065.
https://doi.org/10.1155/2017/8386065
25.Narayani M. Bioethanol production from tea fungal biomass grown on tea manufacture waste. [Thesis]. National Institute of Technology, Raurkela; 2013.
http://ethesis.nitrkl.ac.in/4724/%5Cnhttp://ethesis.nitrkl.ac.in/4724/1/411LS2055.
26.Heim KE, Tagliaferro AR, Bobilya DJ. Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships J Nutr Biochem 2002; 13(10):572-84.
https://doi.org/10.1016/s0955-2863(02)00208-5
27.Chen Y, Tang S, Chen Y, Zhang R, Zhou M, Wang C, et al. Structure-activity relationship of procyanidins on advanced glycation end products formation and corresponding mechanisms. Food Chem 2019; 272:679-87.
https://doi.org/10.1016/j.foodchem.2018.08.090
28.Çelik H, Koşar M. Inhibitory effects of dietary flavonoids on purified hepatic NADH-cytochrome b5 reductase: Structure-activity relationships. Chem Biol Interact 2012; 197(2-3):103-9.
https://doi.org/10.1016/j.cbi.2012.04.003
29.Abegaz BM, Kinfe HH. Naturally occurring homoisoflavonoids: phytochemistry, biological activities, and synthesis (Part II). Nat Prod Commun 2019; 14(5):1934578X1984581.
https://doi.org/10.1177/1934578X19845813
30.Siddaiah V, Rao CV, Venkateswarlu S, Subbaraju GV. A concise synthesis of polyhydroxydihydrochalcones and homoisoflavonoids. Tetrahedron 2006; 62(5):841-46.
https://doi.org/10.1016/j.tet.2005.10.059
31.Uchiyama S, Shimizu T, Shirasawa T. CuZn-SOD deficiency causes ApoB degradation and induces hepatic lipid accumulation by impaired lipoprotein secretion in mice. J Biol Chem 2006; 281(42):31713-9.
https://doi.org/10.1016/S0021-9258(19)84085-1
32.Noichri Y, Chalghoum A, Chkioua L, Baudin B, Ernez S, Ferchichi S, et al. Low erythrocyte catalase enzyme activity is correlated with high serum total homocysteine levels in Tunisian patients with acute myocardial infarction. Diagn Pathol 2013; 8:68.
https://doi.org/10.1186/1746-1596-8-68
33.Torzewski M, Ochsenhirt V, Kleschyov AL, Oelze M, Daiber A, Li H, et al. Deficiency of glutathione peroxidase-1 accelerates the progression of atherosclerosis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 2007; 27(4):850-57.
https://doi.org/10.1161/01.ATV.0000258809.47285.07



DOI: https://doi.org/10.19106/JMedSci005502202301

Article Metrics

Abstract views : 1171 | views : 1035




Copyright (c) 2023 Prasetyastuti, Noviyanty Indjar Gama

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.