Direct Stimulation by Methanol Addition on the Cultured Medium for Methanol Dehydrogenase Protein Purification from Bradyrhizobium japonicum USDA110

https://doi.org/10.21059/buletinpeternak.v42i3.28155

Novita Kurniawati(1*), Ambar Pertiwiningrum(2), Yuny Erwanto(3), Nanung Agus Fitriyanto(4), Mohammad Zainal Abidin(5)

(1) Animal Products Technology, Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
(2) Animal Products Technology, Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
(3) Animal Products Technology, Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
(4) Animal Products Technology, Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
(5) Animal Products Technology, Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
(*) Corresponding Author

Abstract


Methanol dehydrogenase (MDH) enzyme was purified from Bradyrhizobium japonicum USDA110 cell-free extract. The bacteria were grown in a culture medium with direct 0.5% methanol addition aimed to stimulates the MDH catalytic enzyme activation. Bradyrhizobium japonicum USDA110 MDH enzyme was purified by using 25 mM 2-(N-morpholine) ethanesulfonic acid/MES pH 5.5 buffer and 1 M sodium chloride/NaCl which separated into three columns, the first column was PD-10 for buffer exchange; the second column was HiTrap Sepharose HP to obtain unbonded fraction in the column; and the third column was Mono S 5/50 GL integrated with two pumps HPLC (high-performance liquid chromatography) to obtain pure MDH enzyme for serial changing of 1 M NaCl-25mM MES pH 5.5 with the flow rate at 1 ml/min. The protein concentration and MDH catalytic enzyme activity were observed on each purification process starting from the cell-free extract to pure MDH enzyme. The pure MDH enzyme was obtained by Mono S 5/50 GL-HPLC purification which showed a single band on SDS PAGE (sodium dodecyl sulfate-polyacrylamide gel electrophoresis). The MDH enzyme purification from Bradyrhizobium japonicum USDA110 showed 90-fold purification, a sub-molecular weight of 63 kDa, specific activity at 2.69 U/mg, and optimum activity at a 35oC temperature and pH 9.

     


Keywords


High-performance liquid chromatography; MDH; Sodium chloride; 2-(N- morpholine) ethanesulfonic acid

Full Text:

PDF


References

Abanda-Nkpwatt, D., M. Müsch, J. Tschiersch, M. Boettner, and W. Schwab. 2006. Molecular interaction between Methylobacterium extorquens and seedlings: growth promotion, methanol consumption, and localization of the methanol emission site. J. Exp. Bot. 57: 4025-4032.

Anthony, C. 1982. The Biochemistry of Methylotrophs. Academic Press, London.

Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3.

Day, D. J. and C. Anthony. 1990. Methanol dehydrogenase from Methylobacterium extorquens AM1. Methods Enzymology 188: 210-216.

Fitriyanto, N. A., M. Fushimi, M. Matsunaga, A. Pertiwiningrum, T. Iwama, and K. Kawai. 2011. Molecular structure and gene analysis of Ce3+-induced Methanol dehydrogenase of Bradyrhizobium sp. MAFF211645. Journal of Bioscience and Bioengineering 111: 613-617. https://doi: 10.1016/j/jbiosc.2011.01.015.

Hibi, Y., K. Asai, H. Arafuka, M. Hamajima, T. Iwama, and K. Kawai. 2011. Molecular structure of La3+ - induced Methanol dehaydrogenase-like protein in Methylobacterium radiotolerans. Journal of Bioscience and Bioengineering 111: 547-549. https://doi: 10.1016/j/jbiosc.2010.12.017.

Ito, N., M. Itakura, S. Eda, K. Saeki, H. Oomori, T. Yokoyama, T. Kaneko, S. Tabata, T. Ohwada, S. Tajima, T. Uchiumi, E. Masai, M. Tsuda, H. Mitsui, and K. Minamisawa. 2006. Global gene expression in Bradyrhizobium japonicum cultured with vanilline, vanillate, 4-Hidroxybenzoate and Protocathecuate. microbes and environments 21: 240-250.

Kaneko, T., Y. Nakamura, S. Sato, K. Minamisawa, T. Uchiumi, S. Sasamoto, A. Watanabe, K. Idesawa, M. Iriguchi, K. Kawashima, M. Kohara, M. Matsumoto, S. Shimpo, H. Tsuruoka, T. Wada, M. Yamada, and S. Tabata. 2002a. Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. DNA Res 9: 189-197.

Kaneko, T., Y. Nakamura, S. Sato, K. Minamisawa, T. Uchiumi, S. Sasamoto, A. Watanabe, K. Idesawa, M. Iriguchi, K. Kawashima, M. Kohara, M. Matsumoto, S. Shimpo, H. Tsuruoka, T. Wada, M. Yamada, and S. Tabata. 2002b. Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110 (supplement). DNA Res 9: 225-256.

Liu, Q., J. R. Kirchhoff, C. R. Faehnle, R. E. Viola, and R. A. Hudson. 2006. A rapid method for the purification of methanol dehydrogenase from Methylobacterium extorquens. Protein Expr Purif. 46: 316-20. https://doi: 10.1016/j.pep.2005.07.014.

Marshall, M. N., R. C. MacDonald, J. J. Franzen, C. Wojciechowski, and R. Fall. 1995. Methanol emission from leaves: enzymatic detection of gas-phase methanol and relation of methanol fluxes to stomatal conductance and leaf development. Plant Physiol. 108: 1359-1368.

Nakagawa, T., R. Mitsui, A. Tani, K. Sasa, S. Tashiro, T. Iwama, T. Hayakawa, and K. Kawai. 2012. A catalytic role of xoxf1 as La3+ -dependent Methanol dehydrogenase in Methylobacterium extorquens strain AM1. PLoS ONE 7: e50480. https://doi:10.1371/journal.pone.0050480.

Peyraud, R., P. Kiefer, P. Christen, J. C. Portais, and J. A. Vorholt. 2012. Co-Consumption of methanol and succinate by Methylobacterium extorquens AM1. PLoS ONE 7: e48271. https://doi.org/10.1371/journal.pone.0048271.

Renier, A., S. M. De Faria, P. Jourand, E. Giraud, B. Dreyfus, S. Rapior, and Y. Prin. 2011. Nodulation of Crotalaria podocarpa DC. by Methylobacterium nodulans displays very unusual features. Journal of Experimental Botany 62: 3693–3697. https://doi.org/10.1093/jxb/err083

Sudtachat, N., N. Ito, M. Itakura, S. Masuda, S. Eda, H. Mitsui, Y. Kawaharada, and K. Minamisawa. 2009. Aerobic vanillate degtradation and C1 compound metabolisme in Bradyrhizobium japonicum. Appl. Environment. Microbiol. 75: 5012-5017. https://doi:10.1128/AEM.00755-09.

Vuilleumier, S., L. Chistoserdova, M-C. Lee, F. Bringel, A. Lajus, Y. Zhou, B. Gourion, V. Barbe, J. Chang, S. Cruveiller, C. Dossat, W. Gillett, C. Gruffaz, E. Haugen, E. Hourcade, R. Levy, S. Mangenot, E. Muller, T. Nadalig, M. Pagni, C. Penny, R. Peyraud, D. G. Robinson, D. Roche, Z. Rouy, C. Saenampechek, G. Salvignol, D. Vallenet, Z. Wu, C. J. Marx, J. A. Vorholt, M. V. Olson, R. Kaul, J. Weissenbach, C. Me´digue, and M. E. Lidstrom. 2009. Methylobacterium genome sequences: A Reference blueprint to investigate microbial metabolism of C1 compounds from natural and industrial sources. PLoS ONE 4: e5584. https://doi:10.1371/journal.pone.0005584.

Weber, K. and M. Osborn. 1969. The reliability of molecular weight determinations by dodecyl Sulfate-Polyacrylamide gel electrophoresis. The Journal of Biological Chemistry 244: 4406-4412.



DOI: https://doi.org/10.21059/buletinpeternak.v42i3.28155

Article Metrics

Abstract views : 1715 | views : 1478

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Buletin Peternakan (Bulletin of Animal Science) Indexed by:

   
 
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.