SRY Gene Marker Differences in Native and Crossbreed Cattle

https://doi.org/10.21059/buletinpeternak.v42i3.29940

Tety Hartatik(1*), Dwi Ahmad Priyadi(2), Ali Agus(3), Sigit Bintara(4), I Gede Suparta Budisatria(5), Panjono Panjono(6), Budi Prasetyo Widyobroto(7), Yudi Adinata(8)

(1) Department of Animal Breeding and Reproduction, Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
(2) Technology of Processing Livestock Product, Politeknik Negeri Banyuwangi. Jawa Timur, 68461, Indonesia
(3) Departement of Animal Nutrition and Feed Science, Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
(4) Department of Animal Breeding and Reproduction, Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
(5) Departement of Animal Production, Faculty of Animal Science, Universitas Gadjah Mada. Yogyakarta, 55281, Indonesia
(6) Departement of Animal Production, Faculty of Animal Science, Universitas Gadjah Mada. Yogyakarta, 55281, Indonesia
(7) Departement of Animal Production, Faculty of Animal Science, Universitas Gadjah Mada. Yogyakarta, 55281, Indonesia
(8) Beef Cattle Research Station, Grati, Pasuruan, 6714, Indonesia
(*) Corresponding Author

Abstract


This study focused on the promoter region of the SRY gene with 1,281 bp DNA fragments, including 5'UTR, CAAT signal, and TATA box. Genomic samples of 19 cattle were obtained from Wagyu-BX (n = 2), BX (n = 5), Simmental (n = 2), Limousin (n = 2), Ongole (n = 2), Madura (n = 2), Bali (n = 2), Nellore (n = 1), and Hereford (n = 1). Two flanking primers (forward and reverse) were used for polymerase chain reaction (PCR). The PCR products were then sequenced by using a two-way primer. The obtained sequences were aligned with clustalW software to determine the differences in the nucleotide base arrangement which compiled the promoter region of the SRY gene. The cattle crossbreeding was done as an effort to improve the genetic variations and qualities. The SRY gene is a marker gene inherited from the male side (bull), so the SRY gene is expected to be used as a marker to monitor the crossbreeding. The monitoring of the crossbreed cattle is an initial effort to increase the genetic variations and enhance the genetic qualities without threatening the germplasm purity. The results of this study showed that the overall sample is monomorphic, except for Bali and Nellore cattle. Further research is needed by expanding the analysis area of the SRY gene and increasing the number of samples.


Keywords


Genetics marker; PCR; Promoter region; Sequencing; Sex-determining region Y (SRY)

Full Text:

PDF


References

Alam, T., B. Bahar, S. M. Waters, M. McGee, and J. V. O’Doherty. 2012. Functional characterization of the bovine neuropeptide Y gene promoter and evaluation of the transcriptional activities of promoter haplotypes. Mol. Biol. Rep. 39: 919-928.

Barrett, L. W., S. Fletceh, and S. D. Wilton. 2013. Untranslated gene region and other non-coding elements. In Biochemistry and Molecular Biology. Springer, New York, USA.

Chen, Y. S., J. D. Racca, P. W. Sequeira, and M. A.Weiss. 2015. Inherited sex-reversalmutation in SRY define a functionalthreshold of gonadogenesis: biochemicaland evolutionary implication of a raremonogenic syndrome. J. Rare Dis. Diagn.Ther. 1: 1-12. http://doi: 10.21767/2380-7245.100020.

Cheng, H., H. Shi, R. Zhou, Y. Guo, L. Liu, J. Liu, Y.Jiang, T. Kudo, and S. Sutou. 2001.Characterization of Bovine sex-determininggene SRY. Genet. Sel. Evol. 33: 687-694.

Coriat, A., U. Muller, J. L. Harry, D. Uwanogho, and P. T. Sharpe. 1993. PCR amplification of SRY-related gene sequences reveal evolutionary conservation of the SRY-box motif. PCR. Methods. Appl 2: 218-222.

Ellegren, H. 2011. Sex-chromosome evolution: recent progress and the influence of male and female heterogamety. Genetics. 12: 157-166.

Han, F., X. Lin, D. Liu, N. Wu, and B. Liao. 2010. Identification of the regulation sequences of bovine SRY promoter. Sci. Agri. Sinica. 43: 2996-3004.

Harley, V. R., D. I. Jackson, P. J. Hextall, J. R. Hawkins, G. D. Berkovitz, S. Sockanathan, R.Lovell-Badge, and P. N. Goodfellow.1992. DNA binding activity of recombinantSRY from normal males and XY females.Science. 255: 453-456.

Hartatik, T., T. S. M. Widi, S. D. Volkandari, D. Maharani, and Sumadi. 2014. Analysis of DNA polymorphism in SRY gene of Madura cattle populations. Procedia. Environ. Sci. 20: 365-369.

Hassanin, A. and A. Ropiquet. 2007. Resolving a zoological mystery: the Kouprey is a real species. Proceeding R. Soc. B. 274: 2849-2855.

Juarez-Oropeza, M., V. Lopez, G. Alvares-Fernandez, Y. Gomez, and E. Pedernera.1995. Androstenedione metabolism in different stage of bovine gonad development. J. Exp. Zool. 271: 373-378.

Kadonaga, J. T. 2004. Regulation of RNA Polymerase II transcription by sequence-specific DNA binding factors. Cell. 116: 247-257.

Kadonaga, J. T. 2012. Perspectives on the RNA Polymerase II core promoter. Wiley Interdiscip. Rev. Dev. Biol. 1: 40-51.

Karp, G. 2010. Cell and Molecular Biology; Concepts and Experiments. Witt, K., M. Staat, and O. McFadden (eds). John Wiley and Sons, Inc. New Jersey. USA.

King, C. Y. and M. A. Weiss. 1993. The SRY high-mobility-group box recognizes DNA by partial intercalation in the minor groove: A topological mechanism of sequence specificity. Proceeding Natn, Acad. Sci. USA. 90: 11990-11994.

Li, M. J., M. Liu, D. Liu, X. Y. Lan, C. Z. Lei, D. Y. Yang, and H. Chen. 2013. Polymorphisms in the promoter region of the Chinese bovine PPARGC1A gene. Asian-Aust. J. Anim. Sci. 26: 483-487.

Matsuzawa-Watanabe Y., J. Inoue, and K. Semba. 2003. Transcriptional activity of testis-determining factor SRY is modulated by the Wilms’ tumor 1 gene product, WT1. Oncogene. 22: 5956-5960.

Mohamad, K., M. Olsson, H. T. A. van Tol, S. Mikko, B. H. Vlamings, G. Andersson, H. Rodriquez-Martinez, B. Purwantara, R. W. Paling, B. Colenbrander, and J. A. Lenstra. 2009. On the origin of Indonesian cattle. Plos One. 4: e5490. http://doi: i:10.1371/journal.pone.0005490.

Mukhopadhyay, C. S., A. K. Gupta, B. R. Yadav, and T. K. Mohanty. 2011. Exploration of Y-chromosome specific markers to discover SNP associated with sub fertility trait in dairy bulls. Indian. J. Biotechnol. 10: 178-182.

Priyadi, D. A., Y. Adinata, and T. Hartatik. 2017. Restriction enzyme mapping of Cytochrome B gene on Angus grade cattle. A. Isnansetyo, T.R. Nuringtyas (eds.), Proceeding of the 1st International Conference on Tropical Agriculture. Springer International Publishing. Switzerland. http://doi: 10.1007/978-3-319-60363-6.

Ross, D. G. F., J. Bowles, P. Koopman, and S. Lehnert. 2008. New insights into SRY regulation through identification of 5’ conserved sequences. BMC Molecular Biology. 9: 1-15.

Ruvinsky, A. 2015. Developmental genetic. In The Genetics of Cattle 2nd edn. Fries, R. dan A. Ruvinsky. (eds). CABI. Oxfordshire, Inggris.

Samson, S. L. A. and N. C. W. Wong. 2002. Role of Sp1 in insulin regulation of gene expression. J. Mol. Endocrinol. 29: 265-279.

Sutarno and A. W. Setyawan. 2016. Review: the diversity of local cattle in Indonesia and the efforts to develop superior indigenous cattle breeds. Biodiversitas. 17: 275-295.

Tanaka, K. and T. Namikawa. 2002. Genetic diversity of native cattle in Asia. Proceeding of 10th NIAS International Workshop on Genetic Resources. National Institute of Agrobiological Science. Japan.

Taqliarini, E. B., J. G. Assumpcao, M. R. Scolfaro, M. P. de Mello, A. T. Maciel-Guerra, G. Guerra-Junior, and C. Hackel. 2005. Mutation in SRY and WT1 genes required for gonadal development are not responsible for XY partial gonadal dysgenesis. Bras. J. Med. Biol. Res. 38: 17-25.

Verkaar, E. L. C., I. J. Nijman, M. Beeke, E. Hanekamp, and J. A. Lenstra. 2004. Maternal and paternal lineages in cross-breeding Bovine species. Has Winset a Hybrid origin?. Mol. Biol. Evol. 21: 1165-1170.

Wilson, D. E. and D. M. Reeder. 2005. Mammal Species of the World: a taxonomic and geographic reference 3rd edn. Johns Hopkins University Press. Maryland. USA.

Zhang, Y., D. Sun, Y. Yu, and Y. Zhang. 2006. A Y-linked SNP in SRY gene differentiates Chinese indigenous swamp buffalo and introduced river buffalo. Asian-Aust. J. Anim. Sci. 19: 1240-1244.

Zhao, L. and P. Koopman. 2012. SRY protein function in sex determination: thinking outside the box. Chromosome. Res. 20: 153-162.

Zhao, Z.D., L.S Zan, A.N. Li, G. Cheng, S.J. Li, Y.R. Zhang, Z.Y. Wang, and Y.Y. Zhang. 2016. Characterization of the promoter region of the bovine long-chain acyl-CoA synthetase 1 gene: roles of E21, Sp1, KLF15, and E2F4. Sci. Rep. 6: 19661. http://doi: 10.1038/srep19661.



DOI: https://doi.org/10.21059/buletinpeternak.v42i3.29940

Article Metrics

Abstract views : 4245 | views : 2827

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Buletin Peternakan (Bulletin of Animal Science) Indexed by:

   
 
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.