Effects of Mannanase Supplementation and Citric Acid on the Growth Performance of Broilers

https://doi.org/10.21059/buletinpeternak.v46i3.75471

Maria Patricia Arellano(1), Listya Purnamasari(2), Joseph dela Cruz(3*)

(1) Department of Basic Veterinary Sciences College of Veterinary Medicine, University of the Philippines Los Baños Laguna 4031, Philippines
(2) Department of Animal Husbandry, Faculty of Agricultural, University of Jember, Jember, 68121, Indonesia
(3) Department of Basic Veterinary Sciences College of Veterinary Medicine, University of the Philippines Los Baños Laguna 4031, Philippines
(*) Corresponding Author

Abstract


The study was conducted to evaluate the effects of citric acid and mannanase feed supplementation on the growth performance of broiler chickens. Three hundred twenty day-old unsexed Cobb broiler chicks from a commercial hatchery plant were used in the study. The chicks were randomly assigned to four treatment groups following a completely randomized design. The following treatment groups were used: T1: Control, T2: 3% (w/w) Citric Acid supplementation, T3: 80 ppm β-Mannanase supplementation, and T4: 3% (w/w) Citric Acid and 80 ppm β-Mannanase supplementation. The supplementation of citric acid and mannanase significantly improves the growth performance of broiler chickens. Body weight and body weight gain were significantly higher (P<0.05) in the citric acid and β-mannanase combination group compared to all the treatment groups. The evaluation of feed intake revealed that T3 and T4 had significantly lower (P<0.05) feed intake than the other groups. The combination of citric acid and β-Mannanase also resulted in a significantly more efficient (P<0.05) feed conversion ratio. No mortality was observed during the experiment. It may be concluded that the supplementation of citric acid and β- mannanase resulted in a better performance in broilers.


Keywords


Broiler; Citric acid; Feed additive; Growth performance; β-Mannanase

Full Text:

PDF


References

Abd-Elsamee, M. O., H. F. A. Motawe, M. M. Selim, H. Mohamed, and R. Elsherif. 2020. Effect of different dietary crude protein levels and citric acid on broiler chickens’ performance, carcass characteristics, intestinal morphology, and blood components. World Vet. J. 10: 362-374. http://dx.doi.org/10.36380/scil.2020.wvj45

Abdollahi, M. R., M. Wiltafsky-Martin, F. Zaefarian, and V. Ravidran. 2022. Influence of Conditioning and Expansion Characteristics on the Apparent Metabolizable Energy and Standardized Ileal Amino Acid Digestibility of Full-Fat Soybeans for Broilers. Animals, 12: 1-11. https://doi.org/10.3390/ani12081021

Adil, S., T. Banday, G. A. Bhat, M. S. Mir, and M. Rehman. 2010. Effect of dietary supplementation of organic acids on performance, intestinal histomorphology, and serum biochemistry of broiler chicken. Vet. Med. Int., 210: 1-7 https://doi.org/10.4061%2F2010%2F479485

Alloui, N., M. N. Alloui, and A. Agabou. 2014. Application of herbs and phytogenic feed additive in poultry production. Global J. Anim Sci. Res. 2: 234-243.

Ariandi, Yopi, Meryandini A. 2015. Enzymatic Hydrolysis of Copra Meal by Mannanase from Streptomyces sp. BF3.1 for The Production of Mannooligosaccharides. HAYATI J. Biosci. 22: 79-86. https://doi.org/10.4308/hjb.22.2.79

Barros, V. R. S. M. D., G. R. Q. Lana, S. R. V. Lana, Â. M. Q. Lana, , F. S. A. Cunha and J. V. E. Neto. 2015. β-mannanase and mannan oligosaccharides in broiler chicken feed. Ciência Rural, 45: 111-117. https://doi.org/10.1590/0103-8478cr20131544

Bederska-Łojewska, D., S. Swiatkiewicz, A. Arczewska-Włosek, and T. Schwarz. 2017. Rye non-starch polysaccharides: Their impact on ´ poultry intestinal physiology, nutrients digestibility and performance indices - A review. Ann. Anim. Sci. 17: 351–369. https://doi.org/10.1515/aoas-2016 0090

Caldas, J. V., K. Vignale, N. Boonsinchai, J. Wang, M. Putsakum, J. A. England, C. N. Coon. 2018. The effect of β-mannanase on nutrient utilization and blood parameters in chicks fed diets containing soybean meal and guar gum. Poult. Sci. 97: 2807 -2817 https://doi.org/10.3382/ps/pey099

Cho, J. H. and I. H. Kim. 2013. Effects of beta- mannanase supplementation in combination with low and high energy dense diets for growing and finishing broilers. Livest. Sci. 154: 137-143. https://doi.org/10.1016/j.livsci.2013.03.004

Chowdhury, R., K. M. S. Islam, M. J. Khan, M. R. Karim, M. N. Haque, M. Khatun, and G. M. Pesti. 2009. Effect of citric acid, avilamycin, and their combination on the performance, tibia ash, and immune status of broilers. Poult. Sci. 88: 1616-1622. https://doi.org/10.3382/ps.2009-00119

Cowieson, A. J. and A. M. Kluenter. 2019. Contribution of exogenous enzymes to potentiate the removal of antibiotic growth promoters in poultry production. Anim. Feed Sci. Tech. 250: 81-92. https://doi.org/10.1016/j.anifeedsci.2018.04 .026

Cowieson, A. J., T. Acamovic, and M. R. Bedford. 2010. The effect of phytase and phytic acid on endogenous losses from broiler chickens. British Poult. Sci. 44: 23-24. https://doi.org/10.1080/00071660410001668923

da Rocha, A. P., R. D. Abreu, G. J. C. de Oliveira, R. C. B. Albinati, A. S. da Paz, L. G. de Queiroz, and T. M. Pedreira. 2010. Prebiotics, organics acids and probiotics in rations for broilers Prebióticos, ácidos orgânicos e probióticos em rações para frangos de corte. Revista Brasileira de Saúde e Produção Animal.

Dehghani-Tafti, N. and R. Jahanian. 2016. Effect of supplemental organic acids on performance, carcass characteristics, and serum biochemical metabolites in broilers fed diets containing different crude protein levels. Anim. Feed Sci. Tech. 211: 109-116. https://doi.org/10.1016/j.anifeedsci.2015.09.019

Dittoe, D. K., S. C. Ricke, and A. S. Kiess. 2018. Organic acids and potential for modifying the avian gastrointestinal tract and reducing pathogens and disease. Front. Vet. Sci. 5: 216. https://doi.org/10.3389/fvets.2018.00216

El-Masry, K. N., N. M. Ragaa, M. A. Tony, and R. A. El-Banna. 2017. Research article effect of dietary inclusion of guar meal with or without β-mannanase supplementation on broiler performance and immunity. Pakistan J. Nutr. 16: 341-350. http://dx.doi.org/10.3923/pjn.2017.341.350

Hassan, R. A., M. I. Sand, and S. M. El-Kadi. 2012. Effect of some organic acids on fungal growth and their toxins production. Int. J. Adv. Bio. 2: 1-11.

Islam, M. Z., Z. H. Khandaker, S. D. Chowdhury, and K. M. S. Islam. 2008. Effect of citric acid and acetic acid on the performance of broilers. J. Bangladesh Agri. Univ. 6: 315- 320. https://doi.org/10.3329/jbau.v6i2.4828

Jackson, M. E., K. Geronian, A. Knox, J. McNab, and E. McCartney. 2004. A dose-response study with the feed enzyme beta- mannanase in broilers provided with corn-soybean meal based diets in the absence of antibiotic growth promoters. Poult. Sci. 83: 1992-1996. https://doi.org/10.1093/ps/83.12.1992

Khalique, A., D. Zeng, M. Shoaib, H. Wang, X. Qing, D. S. Rajput, and X. Ni. 2020. Probiotics mitigating subclinical necrotic enteritis (SNE) as potential alternatives to antibiotics in poultry. AMB Express, 10: 1-10. https://doi.org/10.1186/s13568-020-00989-6

Kong, C., J. H. Lee, and O. Adeola. 2011. Supplementation of β-mannanase to starter and grower diets for broilers. Canadian J. Anim. Sci. 91: 389-397. https://doi.org/10.4141/cjas10066

Kopecky, J. 2012. Effect of organic acids supplement on performance of broiler chickens. Scientific Papers: Anim. Sci. Biotech. 45: 51-54.

Mehri, M. 2010. Effects of Beta-Mannanase on broiler performance, gut morphology, and immune system. African J. Biotech. 9: 6221-6228.

Mohammadigheisar, M., V. L. Shouldice, B. Balamuralikrishnan, and I. H. Kim. 2021. Effect of dietary supplementation of β-mannanase on growth performance, carcass characteristics, excreta microflora, blood constituents, and nutrient ileal digestibility in broiler chickens. Anim. Biosci. 34: 1324-1349. https://doi.org/10.5713/ab.20.0355

Mustafa, S. and T. Jameel. 2013. The effect of phytase enzyme on the performance of broilers. Biologia (Pakistan) 59: 99-106.

Nezhad, Y. E., M. Shivazad, R. Taherkhani, and K. Nazerad. 2007. Effects of citric acid supplementation on phytate Putilization and efficiency of microbial phytase in laying hen. J. Biol. Sci. 7: 638-642. https://dx.doi.org/10.3923/jbs.2007.638.642

Nourmohammadi, R., S. M. Hosseini, and H. Farhangfar. 2010. Effect of dietary acidification on some blood parameters and weekly performance of broiler chickens. J. Anim. Vet. Adv. 9: 3092-3097. http://dx.doi.org/10.3923/javaa.2010.3092.3097

Rafacz-Livingston, K. A., C. Martinez-Amezcua, C. M. Parsons, D. H. Baker, and J. Snow 2005. Citric acid improves phytate phosphorus utilization in crossbred and commercial broiler chicks. Poult. Sci. 84: 1370-1375. https://doi.org/10.1093/ps/84.9.1370

Saeed, M., T. Ayaşan, M. Alagawany, M. E. A. El- Hack, M. A. Abdel-Latif, and A. K. Patra. 2019. The Role of ß-Mannanase (Hemicell) in Improving Poultry Productivity, Health and Environment. Brazilian J. Poult. Sci. 21: 1-8 .https://doi.org/10.1590/1806-9061-2019-1001

Sharifuzzaman, M., F. Sharmi, M. J. Khan, M. S. R. Shishir, S. Akter, M. Afrose, and H. E. Jannat. 2020. Effects of Low Energy Low Protein Diet with Different Levels of Citric Acid on Growth, Feed Intake, FCR, Dressing Percentage, and Cost of Broiler Production. J. Agri. Vet. Sci. 13: 33-41. https://doi.org/10.9790/2380-1303023341

Shyer, A. E., T. Talinen, N. L. Nerurkar, Z. Wei, E. S. Gil, D. L. Kaplan, C. J. Tabin, and L. Mahadevan. 2013. Villification: How the Gut Gets Its Villi. Science 342: 212 – 218. https://doi.org/10.1126/science.1238842

Singh, A. K. and W. K. Kim. 2021. Effects of Dietary Fiber on Nutrients Utilization and Gut Health of Poultry: A Review of Challenges and Opportunities. Animals. 11: 1 – 18. https://doi.org/10.3390/ani11010181

Sultan, A., T. Ullah, S. Khan, and R. U. Khan. 2015. Effect of organic acid supplementation on the performance and ileal microflora of broiler during the finishing period. Pakistan J. Zoology 47: 635 – 639.

Van der Wielen, P. W. J. J., S. Biesterveld, S. Notermans, H. Hofstra, B. A. P. Urlings, and F. van Knapen. 2000. Role of Volatile Fatty Acids in Development of the Cecal Microflora in Broiler Chickens during Growth. Appl. Environ. Microb. https://doi.org/10.1128/AEM.66.6.2536- 2540.2000

Woyengo, T. A., B. A. Slominski, and R. O. Jones. 2010. Growth performance and nutrient utilization of broiler chickens fed diets supplemented with phytase alone or in combination with citric acid and multicarbohydrase. Poult. Sci. 89: 2221–2229. https://doi.org/10.3382/ps.2010-00832

Yang, Y., W. Qiu, Y. Li, and L. Liu. 2020. Antibiotic residues in poultry food in Fujian Province of China. Food Additives & Contaminants: Part B 13: 177-184. https://doi.org/10.1080/19393210.2020.1751309

Zangiabadi, H., and M. Torki. 2010. The effect of a β-mannanase-based enzyme on growth performance and humoral immune response of broiler chickens fed diets containing graded levels of whole dates. Trop. Anim. Health Prod. 42: 1209-1217. https://doi.org/10.1007/s11250-010-9550-1

Zheng, L., D. Li, Z. L. Li, L. N. Kang, Y. Y. Jiang, X. Y. Liu, and J. H. Wang. 2017. Effects of Bacillus fermentation on the protein microstructure and anti‐nutritional factors of soybean meal. Lett. Appl. Microbiol. 65: 520-526. https://doi.org/10.1111/lam.12806



DOI: https://doi.org/10.21059/buletinpeternak.v46i3.75471

Article Metrics

Abstract views : 1517 | views : 995

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Buletin Peternakan (Bulletin of Animal Science) Indexed by:

   
 
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.