Characterization and Association of CFHR5 Gene Polymorphism with Fatty Acid Composition and Cholesterol in Sheep

https://doi.org/10.21059/buletinpeternak.v47i3.84177

Akbanugra Yudhananda(1), Kasita Listyarini(2), Cece Sumantri(3), Asep Gunawan(4*)

(1) Graduate School of Animal Production and Technology, Faculty of Animal Science, IPB University, Bogor 16680
(2) Department of Animal Production and Technology, Faculty of Animal Science, IPB University, Bogor 16680
(3) Department of Animal Production and Technology, Faculty of Animal Science, IPB University, Bogor 16680
(4) Department of Animal Production and Technology, Faculty of Animal Science, IPB University, Bogor 16680
(*) Corresponding Author

Abstract


The Complement Factor H Related 5 (CFHR5) gene is speculated to have an important role in regulating fatty acid composition in sheep. The aim of this study was to investigate the polymorphism of the CFHR5 gene and its association with fatty acid composition and cholesterol of sheep in Indonesia. A total of 172 rams from 83 priangan sheep (PS), 20 sapudi sheep (SS), 19 Garut sheep (GS), 20 jonggol sheep (JS), 10 Garut composite sheep (GCS), 10 compass agrinac sheep (CAS), and 10 Barbados cross sheep (BCS) were used for this study. Identification of CFHR5 gene polymorphism were performed by Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) using AciI restriction enzyme. The results showed that the CFHR5 gene in all sheep populations were polymorphic producing three genotypes, e.g. CC, CT and TT, respectively. The polymorphism had a significant effect (p<0.05) on fatty acid composition (miristoleic [C14:1], ginkgolic [C17:1], tridecanoic [C13:0], and heptadecanoic [C17:0] acids) and cholesterol. The breed and polymorphism had a significant effect (p<0.05) on fatty acid composition (JS with tridecanoic acid [C13:0] and BCS with miristoleic acid [C14:1]). The CC genotype is the preferred genotype and as it exhibits reduced levels of saturated fatty acids and cholesterol. The BCS sheep is the preferred genotype and as it exhibits high PUFA/SFA ratio. The CFHR5 gene (SNP c.1011C>T) has the potential to be used as a genetic marker for the selection of low saturated fatty acid composition and cholesterol in sheep


Keywords


Sheep; fatty acid; cholesterol; CFHR5 gene; PCR-RFLP

Full Text:

PDF. Yudananda


References

Aali, M., H. Moradi-Shahrbabak, M. Moradi-Shahrbabak, M. Sadeghi, and H. Kohram. 2016. Polymorphism in the SCD gene is associated with meat quality and fatty acid composition in Iranian fat-and thin-tailed sheep breeds. Livestock Science. 188: 81-90.

AOAC (Association of Analytical Chemist). 2005. Official Methods of Analysis of the Association of Official Analytical Chemist. Washington (USA): Association of Official Analytical Chemist.

Cao, Y., D. T. Mauger, C. L. Pelkman, G. Zhao, S. M. Townsend, and P. M. Kris-Etherton. 2009. Effects of moderate (MF) versus lower fat (LF) diets on lipids and lipoproteins: A meta-analysis of clinical trials in subjects with and without diabetes. Clin Lipidol. 3: 19-32.

Fukuda, I., A. Ito, G. Hirai, S. Nishimura, H. Kawasaki, and H. Saitoh. 2009. Ginkgolic acid inhibits protein SUMOylation by blocking formation of the E1- SUMO intermediate. Chem Biol. 16: 133-140.

Gale, D. P. and M. C. Pickering. 2011. Regulating complement in the kidney : insights from CFHR5 nephropathy. Disease Models & Mechanisms. 4: 721-726.

Gunawan, A., D. Anggrela, K. Listyarini, M. A. Abuzahra, Jakaria, M. Yamin, I. Inounu, and C. Sumantri. 2018. Identification of single nucleotide polymorphism and pathway analysis of Apolipoprotein A5 (APOA5) related to fatty acid traits in Indonesian sheep. Trop. Anim. Sci. J. 41: 165-173.

Gunawan, A., C. Sumantri, and R. Juniarti. 2017. Gen dan Keragaman Genetik Ternak. IPB Press, Bogor.

Gunawan, A., K. Listyarini, R. S. Harahap, Jakaria, K Roosita, C. Sumantri, I. Inounu, S. H. Akter, M. A. Islam, and M. J. Uddin. 2021. Hepatic transcriptome analysis identifies genes, polymorphisms and pathways involved in the fatty acids metabolism in sheep. PLoS One, 16: e0260514.

Hartl, D. L. and A. G. Clark. 1997. Principle of Population Genetic. Sinauer Associates, Sunderland, MA.

Harahap, R. S., Noor, R. R. and Gunawan, A., 2021. Polymorphism and expression of HSD17β13 gene and its association with lamb quality of Indonesian sheep. Animal Production 23: 44-53.

Hasan, F. and A. Gunawan. 2014. Genetic and phenotypic parameters of body weight in Ettawa grade goats. Media Peternakan 37: 1-8.

Hidayati. 2015. Identifikasi keragaman gen lecithin cholesterol acyltransferase dan lipoprotein lipase dan hubungannya dengan kualitas marbling daging domba. Disertation. Institut Pertanian Bogor, Bogor.

Hua, Z., C. Wu, G. Fan, Z. Tang, and F. Cao. 2017. The antibacterial activity and mechanism of ginkgolic acid C15:1. BMC Biotechnol. 17: 5.

Iguchi, K., N. Okumura, S. Usui, H. Sajiki, K. Hirota, and K. Hirano. 2001. Myristoleic acid, a cytotoxic component in the extract from serenoa repens, induces apoptosis and necrosis in human prostatic LNCaP Cells. Prostate. 47: 59-65.

Jenkins, B., A. James, West, and A. Koulman. 2015. Review of odd-chain fatty acid metabolism and role of pentadecanoic acid (C15:0) and heptadecanoic acid (C17:0) in health and disease. Molecules 20: 2425-2444.

Khasanah, H., A. Gunawan, R. Priyanto, M. F. Ulum, and Jakaria. 2016. Polymorphism of myostatin (MSTN) promoter gene and its association with growth and muscling traits in Bali cattle. Media Peternakan 39: 95-103.

Klug, W. S., M. R. Cummings, and C. A. Spencer. 2006. Concepts of Genetics 8th edn. Pearson Prentice Hall, New Jersey.

Li, J., A. Li, M. Li, Y. Liu, W. Zhao, and D. Gao. 2018. Ginkgolic acid exerts an anti-inflammatory effect in human umbilical vein endothelial cells induced by ox-LDL. Pharmazie 73: 408-412.

Li, X., K. Li, B. Fan, Y. Gong, S. Zhao, Z. Peng, and B. Liu. 2000. The genetic diversity of seven pig breeds in China, estimated by means of microsatellites. AAJAS. 13: 100-102.

Linder, M. C. 2006. Biokimia Nutrisi dan Metabolisme. UI Press, Jakarta.

Listyarini, K., Jakaria, M. J. Uddin, C. Sumantri, and A. Gunawan. 2018. Association and expression of CYP2A6 and KIF12 genes related to lamb flavour and odour. Trop. Anim. Sci. J. 41: 100-107.

Listyarini, K., Sumantri, C., Rahayu, S., Uddin, M. J. and Gunawan, A., 2022. Association study and expression analysis of olfactomedin like 3 gene related to meat quality, carcass characteristics, retail meat cut, and fatty acid composition in sheep. Animal Bioscience 35: 1489-1498.

Ma, H., and K. J. Shieh. 2006. Cholesterol and human health. The Journal of American Science. 2: 46-50.

Mattjik, A. A., and I. M. Sumertajaya, 2006. Perancangan Percobaan. IPB Press, Bogor.

Mboyazi, S. N., M. I. Nqotheni, T. S. Maliehe, and J. S. Shandu. 2020. In vitro antibacterial and in silico toxicity properties of phytocompounds from Ricinus communis leaf extract. Pharmacognosy Journal 12: 977-983.

McRae, J. L., T. G. Duthy, K. M. Griggs, R. J. Ormsby, P. J. Cowan, B. A. Cromer, W. J. McKinstry, M. W. Parker, B. F. Murphy, and D. L. Gordon. 2005. Human factor H-related protein 5 has cofactor activity, inhibits C3 convertase activity, binds heparin, and C-reactive protein and associated with lipoprotein. J. Immunol. 174: 6250-6256.

Mente, A., L. Koning, H. S. Shannon, and S. S. Anand. 2009. A systematic review of the evidence supporting a causal link between dietary factors and coronary heart disease. Arch Intern Med. 169: 659-669.

Munyaneza, J. P., A. Gunawan, and R. R. Noor. 2019. Exploring effectsof betaine-homocysteine methyltransferase (BHMT) gene polymorphisms on fatty acid traits and cholesterol in sheep. JITAA 44: 243-251.

Nei, and Kumar. 2000. Molecular Evolution and Phylogenetics. Oxford University Press, New York. Pfaffl, MW. 2001. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res. 29: e45.

Nelson, D. L. and M. M. Cox. 2013. Lehninger Principles of Biochemistry Sixth Edition. University of Wisconsin Press, Wisconsin.

Noor, R. R. 2010. Genetika Ternak. Penebar Swadaya, Jakarta.

Orsavova, J., L. Misurcova, J. V. Ambrozova, R. Vicha, and J. MLcek. 2015. Fatty acids composition of vegetable oils and its contribution to dietary energy intake and dependence of cardiovascular mortality on dietary intake of fatty acids. Mol. Sci. 16: 12871-12890.

Perez, R., J. Ca-ón, and S. Dunner. 2010. Genes associated with long-chain omega-3 fatty acids in bovine skeletal muscle. Journal of Applied Genetics. 51: 479-487.

Qiao, M., H. Y. Wu, F. E. Li, S. W. Jiang, Y. Z. Xiong, and C. Y. Deng. 2010. Molecular characterization esecondxpression pro¬file and association analysis with carcass traits of porcine LCAT gene. Mol. Biol. Rep. 37: 2227-2234.

Rosyidi, J. 2009. Kualitas daging domba ekor gemuk (DEG) betina periode lepas sapih dengan perlakuan docking dan tingkat pemberian konsentrat ditinjau dari kadar air, lemak dan protein. Jurnal Ilmu dan Teknologi Hasil Ternak 4: 30-35.

Rovadoscki, G. A., S. F. N. Pertile, A. B. Alvarenga, A. S. M. Cesar, F. Pértille, J. Petrini, V. Franzo, W. V. B. Soares, G. Morota, M. L. Spangler, and L. F. B. Pinto. 2018. Estimates of genomic heritability and genome-wide association study for fatty acids profile in Santa Inês sheep. BMC genomics. 19: 1-14.

Sahadevan, S., A. Gunawan, E. Tholen, C. Grobe-Brinkhaus, D. Tesfaye, K. Schellander, M. Hofmann-Apitius, M. U. Cinar, and M. J. Uddin. 2014. Pathway based analysis of genes and interactions influencing porcine testis samples from boars with divergent androstenone content in back fat. Plos One. 9: 1-16.

Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Clonning: A laboratory manual. 2nd Ed. Cold Spring Harbor Laboratory Press, USA.

Soeparno. 2011. Ilmu dan Teknologi Daging. Ed ke-5. UGM Press, Yogyakarta.

Song, Y., J. Liu, K. Zhao, L. Gao, and J. Zhao. 2021. Cholesterol-induced toxicity: An integrated view of the role of cholesterol in multiple diseases. Cell Metabolism, 33: 1911-1925.

Wood, J., M. Enser, A. V. Fisher, G. R. Nute, P. R. Sheard, R. I. Richardson, S. I. Hughes, and F. M. Whittingto. 2008. Fat deposition, fatty acid composition, and meat quality [review]. Meat Sci. 78: 343-358.

Wood, J., R. Richardson, G. Nute, A. Fisher, M. Campo, E. Kasapidou, P. Sheard, and M. Enser. 2004. Effects of fatty acids on meat quality: a review. Meat Sci. 66: 21-32.

Zhao, S., J. Wang, X. Song, X. Zhang, C. Ge, and S. Gao. 2010. Impact of dietary protein on lipid metabolism-related gene expression in porcine adipose tissue. Nutr. Metab. 7: 6.




DOI: https://doi.org/10.21059/buletinpeternak.v47i3.84177

Article Metrics

Abstract views : 1118 | views : 655

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Buletin Peternakan (Bulletin of Animal Science) Indexed by:

   
 
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.