The Optimal Condition of Dry-Heat Stabilization using Oven on Phenolic Content and Antioxidant Activity of Rice Bran: A Meta-Analysis

Martina Tri Puspita Sari(1), Muhammad Ridla(2*), Heri Ahmad Sukaria(3)

(1) Study program of Nutrition and Feed Science, Faculty of Animal Science, IPB University, Kampus IPB Dramaga, Bogor, 16680
(2) Department of Nutrition and Feed Technology, Faculty of Animal Science, IPB University, Kampus IPB Dramaga, Bogor, 16680
(3) Department of Nutrition and Feed Technology, Faculty of Animal Science, IPB University, Kampus IPB Dramaga, Bogor, 16680
(*) Corresponding Author


Rice bran, a beneficial by-product of rice milling, is a rich source of nutrition, containing bioactive compounds such as phenolic compounds and exhibiting high antioxidant activity. Due to these properties, rice bran is a valuable ingredient for functional foods and animal feed. However, its short shelf life caused by rapid rancidity often hinders its use. Dry heating is an effective method to increase the longevity of rice bran. It can be stabilized by heating rice bran to the appropriate temperature, retaining its nutritional value and prolonging its shelf life. This meta-analysis aimed to determine the optimal temperature and time duration for dry-heat stabilization using an oven on Free Phenolic Content (FPC), Bound Phenolic Content (BPC), Total Phenolic Content (TPC), and Antioxidant Activity (AA) of rice bran. A total of 7 articles and 34 experiments were included after applying specified screening criteria. Results indicated that temperature and time duration of dry-heat stabilization had a significant effect


Stabilized Rice Bran; Phenolic content; Antioxidant activity; Meta-analysis

Full Text:

7. M. Ridla


Abavi, S. F. N., S. M. N. Abavi, W. N. S. Etzer, Shakoora Alsadat N Abavi, and Sharifeh Alsadat N Abavi. 2013. Original article Antioxidant and antihemolytic activity of lipid-soluble bioactive substances in avocado fruits. 68: 185–193. https://doi:10. 1051/fruits/2013066.

Acosta-Estrada, B. A., J. A. Gutiérrez-Uribe, and S. O. Serna-Saldívar. 2014. Bound phenolics in foods, a review. Food Chem. 152: 46–55. https://doi:10.1016/j.foodchem.2013.11.09 3.

Arora, R., A. P. Toor, and R. K. Wanchoo. 2015. Esterification of high free fatty acid rice bran oil: Parametric and kinetic study. Chem. Biochem. Eng. Q. 29: 617–623. https://doi:10.15255/CABEQ.2014.2117.

Casas, G. A. 2019. Arabinoxylan is the main polysaccharide in fiber from rice coproducts, and increased concentration of fiber decreases in vitro digestibility of dry matter. Anim. Feed Sci. Technol. 247: 255– 261. https://doi:10.1016/j.anifeedsci.2018. 11.017.

Chen, X. 2019. The effect of different dietary levels of defatted rice bran on growth performance, slaughter performance, serum biochemical parameters, and relative weights of the viscera in geese. Animals. 9. https://doi:10.3390/ani9121040.

Dai, J. and R. J. Mumper. 2010. Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules. 15: 7313–7352. https://doi:10.3390/molecules 15107313.

Ertürk, B. and R. Meral. 2019. The impact of stabilization on functional, molecular and thermal properties of rice bran. J. Cereal Sci. 88: 71–78. https://doi:10.1016/j. jcs.2019.05.011.

Irakli, M. 2021. Comparative evaluation of the nutritional, antinutritional, functional, and bioactivity attributes of rice bran stabilized by different heat treatments. Foods. 10. https://doi:10.3390/foods10010057.

Irakli, M., A. Lazaridou, and C. Biliaderis. 2020. Comparative Evaluation of the Nutritional, Antinutritional, Functional, and Bioactivity Attributes of Rice Bran Stabilized by Different Heat Treatments. 10.3390/foods10010057

Kahlon, T. S. 2009. Fiber ingredients: Food applications and health benefits. Fiber Ingredients Food Appl. Heal. Benefits. 305– 321. https://doi:10.1201/9781420043853- c14.

Liao, M. 2022. Effect of hot air-assisted radio frequency heating on storage stability of rice bran. J. Chinese Cereal. Oils Assoc. 37: 128–136. abstract/scopus_id/85131878285

Liu, Y. Q. 2018. Impact on the nutritional attributes of rice bran following various stabilization procedures. Crit. Rev. Food Sci. Nutr. 59: 2458–2466. https://doi:10.1080/10408398. 2018.1455638.

Loypimai, P. 2009. Effects of ohmic heating on lipase activity, bioactive compounds and antioxidant activity of rice bran. Aust. J. Basic Appl. Sci. 3: 3642–3652. opus_id/77953533772

Loypimai, P. 2015. Impact of stabilization and extraction methods on chemical quality and bioactive compounds of rice bran oil. Emirates J. Food Agric. 27: 849–856. https://doi:10.9755/ejfa.2015-09-738.

Malekian, F., R. M. Rao, W. Prinyawiwatkul, W. E. Marshall, M. Windhauser, and M. Ahmedna. 2000. Lipase and Lipoxygenase Activity, Functionality, and Nutrient Losses in Rice Bran During Storage. Louisiana State Univ. Agric. Cent. 1–69. https://digitalcommons. ontext=agexp

Mardiah, Z., D. Shofinita, and J. P. Sitompul. 2022. Lipase activity, phenolics content and antioxidant activity of rice bran stabilized using natural versus forced convective drying. Agric. Nat. Resour. 56: 321–330. https://doi:10.34044/j.anres.2022.56.2.10.

Meral, R. 2021. Determination of thermal, molecular changes, and functional properties in stabilized rice bran. Int. J. Food Eng. 17: 247–256. https://doi:10.1515/ijfe2020-0168.

Min, B., L. Gu, A. M. McClung, C. J. Bergman, and M. H. Chen. 2012. Free and bound total phenolic concentrations, antioxidant capacities, and profiles of proanthocyanidins and anthocyanins in whole grain rice (Oryza sativa L.) of different bran colours. Food Chem. 133: 715–722. https://doi:10.1016/j.foodchem.2012. 01.079.

Pang, Y., S. Ahmed, Y. Xu, T. Beta, Z. Zhu, Y. Shao, and J. Bao. 2018. Bound phenolic compounds and antioxidant properties of whole grain and bran of white, red and black rice. Food Chem. 240: 212–221. https://doi:10.1016/j.foodchem.2017.07.09 5.

Patil, S. S. 2016. Stabilization of rice bran using microwave: Process optimization and storage studies. Food Bioprod. Process. 99: 204–211. https://doi:10.1016/j.fbp.2016. 05.002.

Pokkanta, P. 2022. Microwave treatment of rice bran and its effect on phytochemical content and antioxidant activity. Sci. Rep. 12. https://doi:10.1038/s41598-022-11744-1.

Rodchuajeen, K., C. Niamnuy, C. Charunuch, C., Soponronnarit, S., and Devahastin, S. 2016. Stabilization of rice bran via different moving-bed drying methods. Drying Technol. 34: 1854-1867. https://doi:10. 1080/07373937.2016.1236345.

Rosenthal, R. 1979. The file drawer problem and tolerance for null results. Psychol. Bull. 86: 638–641. https://doi:10.1037/00332909. 86.3.638.

Saji, N. 2019. Stabilization treatment of rice bran alters phenolic content and antioxidant activity. Cereal Chem. 97: 281–292. https://doi:10.1002/cche.10243.

Sanchez-Meca, J., and F. Marin-Martinez. 2010. Meta - analysis. Int. Encycl. Educ. 7: 274– 275. https://doi:10.21608/sec.2006.146466.

Shahidi, F., and J. D. Yeo. 2016. Insoluble-bound phenolics in food. Molecules. 21. https://doi:10.3390/molecules21091216.

Sharif, M. K., M. S. Butt, F. M. Anjum, and S. H. Khan. 2014. Rice Bran: A Novel Functional Ingredient. Crit. Rev. Food Sci. Nutr. 54: 807–816. https://doi:10.1080/10408398. 2011.608586.

Sharma, P., N. Sharma, S. Pathania, and S. Handa. 2017. Purification and characterization of lipase by Bacillus methylotrophicus PS3 under submerged fermentation and its application in detergent industry. J. Genet. Eng. Biotechnol. 15: 369–377. https://doi:10.1016/j.jgeb.2017.06.007.

Sharma, S. 2014. Storage stability and quality assessment of processed cereal brans. J. Food Sci. Technol. 51: 583–588. https://doi:10.1007/s13197-011-0537-3.

A Siswanti, R. Anandito, E. Nurhartadi, and B. Iskandar. 2019. Effect of various heat treatment on physical and chemical characteristics of red rice bran (Oryza nivara L.) Rojolele. IOP Conf. Ser. Mater. Sci. Eng. 633. https://doi:10.1088/1757- 899X/633/1/012046.

Thanonkaew, A., S. Wongyai, D. J. McClements, and E. A. Decker. 2012. Effect of stabilization of rice bran by domestic heating on mechanical extraction yield, quality, and antioxidant properties of coldpressed rice bran oil (Oryza saltiva L.). LWT. 48: 231–236. https://doi:10.1016/j. lwt.2012.03.018.

Waheed, A., T. Ahmad, A. Yousaf, and I. J. Zaefr. 2004. Effect of various levels of fat and antioxidant on the quality of broiler rations stored at high temperature for different periods. Pakistan Vet. J. 24: 70–75. 75.pdf

Wallace, B. C., M. J. Lajeunesse, G. Dietz, I. J. Dahabreh, T. A. Trikalinos, C. H. Schmid, and J. Gurevitch. 2017. OpenMEE: Intuitive, open-source software for meta-analysis in ecology and evolutionary biology. Methods Ecol. Evol. 8: 941–947. https://doi:10.1111/ 2041-210X.12708.

Wanyo, P., N. Meeso, and S. Siriamornpun. 2014. Effects of different treatments on the antioxidant properties and phenolic compounds of rice bran and rice husk. Food Chem. 157: 457–463. https://doi:10.1016/j. foodchem.2014.02.061.

Yilmaz, N. 2015. The effect of infrared stabilisation on B vitamins, phenolics and antioxidants in rice bran. Int. J. Food Sci. Technol. 50: 84– 91. https://doi:10.1111/ijfs.12614.

Yilmaz, N. 2016. Middle infrared stabilization of individual rice bran milling fractions. Food Chem. 190: 179–185. https://doi:10.1016/j. foodchem.2015.05.094.

Zhao, G., R. Zhang, L. Dong, F. Huang, X. Tang, Z. Wei, and M. Zhang. 2018. Particle size of insoluble dietary fiber from rice bran affects its phenolic profile, bioaccessibility and functional properties. LWT. 87: 450–456. https://doi:10.1016/j.lwt.2017.09.016.


Article Metrics

Abstract views : 96 | views : 39


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Buletin Peternakan (Bulletin of Animal Science) Indexed by:

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.