Synthesis, Characterization, Thermal Analysis, DFT, and Computational/Anti-Corrosion Studies for New Azo Metal Complexes

https://doi.org/10.22146/ijc.101069

Hanadi Mahdi Jarallah(1), Safaa Hussein Ali(2*)

(1) Department of Chemistry, College of Education for Pure Science, University of Basrah, National Highway 216, Basrah 61004, Iraq
(2) Department of Physics, College of Education, Al-Shatrah University, Al-Dawaia Rd. 105, Al-Shatrah 64007, Iraq
(*) Corresponding Author

Abstract


Two new azo-substituted ligands (L1 and L2) were synthesized in a two-step reaction involving condensation between diazonium salt and hydroxyanisole. L1 is (E)-2-(tert-butyl)-6-((4-chlorophenyl)diazenyl)-4-methoxyphenol, and L2 is (E)-2-((3-(tert-butyl)-2-hydroxy-5-methoxyphenyl)diazenyl)benzoic acid. These ligands were employed to synthesize four new bidentate azo metal complexes [MCl2(Lx)] (x = 1 or 2, M = Ni(II) or Cu(II)). The prepared compounds were characterized using various structural analysis techniques, including IR, EI-mass, 1H-NMR, 13C-NMR, and thermogravimetric analysis (TGA). The results confirmed that the ligands coordinate to the metal ion in a bidentate manner through the nitrogen atom of the azo group, the deprotonated phenolic oxygen in the case of L1, and the carboxylic oxygen in the case of L2. A theoretical study was also performed to predict the chemical reactivity and stability of the prepared ligands and their metal complexes. A set of mathematical calculations was employed to describe the full geometry optimizations using density functional theory (DFT), including chemical hardness (η), electronic chemical potential (μ), and electronegativity (χ). The small energy gap calculated between the highest occupied molecular orbital and least unoccupied molecular orbital energies indicates charge transfer within the complexes. These computational calculations suggest that the title compounds are promising candidates as corrosion inhibitors.


Keywords


azo; corrosion; computational studies; density function theory; metal complex



References

[1] Shimizu, T., Tanifuji, N., and Yoshikawa, H., 2022, Azo compounds as active materials of energy storage systems, Angew. Chem. Int. Ed., 61 (36), e202206093.

[2] Luo, C., Ji, X., Hou, S., Eidson, N., Fan, X., Liang, Y., Deng, T., Jiang, J., Wang, C., and Wang, C., 2018, Azo compounds derived from electrochemical reduction of nitro compounds for high performance Li‐ion batteries, Adv. Mater., 30 (23), 1706498.

[3] Ahmad, K., Naseem, H.A., Parveen, S., Shah, H.R., Shah, S.S.A., Shaheen, S., Ashfaq, A., Jamil, J., Ahmad, M.M., and Ashfaq, M., 2019, Synthesis and spectroscopic characterization of medicinal azo derivatives and metal complexes of Indandion, J. Mol. Struct., 1198, 126885.

[4] Mezgebe, K., and Mulugeta, E., 2022, Synthesis and pharmacological activities of azo dye derivatives incorporating heterocyclic scaffolds: A review, RSC Adv., 12 (40), 25932–25946.

[5] Kamenická, B., and Kuchtová, G., 2024, Critical review on electrooxidation and chemical reduction of azo dyes: Economic approach, Chemosphere, 363, 142799.

[6] Aziz, D.M., Hassan, S.A., and Aziz, S.B., 2024, Synthesis and characterization of enhanced azo-azomethine doped PANI/HCl conducting polymers for electrochemical applications, Sci. Rep., 14 (1), 18122.

[7] Selvaraj, V., Swarna Karthika, T., Mansiya, C., and Alagar, M., 2021, An over review on recently developed techniques, mechanisms and intermediate involved in the advanced azo dye degradation for industrial applications, J. Mol. Struct., 1224, 129195.

[8] Zhang, Z.Y., Dong, D., Bösking, T., Dang, T., Liu, C., Sun, W., Xie, M., Hecht, S., and Li, T., 2024, Solar azo‐switches for effective E→Z photoisomerization by sunlight, Angew. Chem. Int. Ed., 63 (31), e202404528.

[9] Hadji, D., Baroudi, B., and Bensafi, T., 2024, Nonlinear optical properties of azo sulfonamide derivatives, J. Mol. Model., 30 (4), 117.

[10] Al-Hamdani, U.J., Hassan, Q.M., Mohammed, M.J., Sultan, H.A., Dhumad, A.M., Emshary, C.A., and Alharis, R.A., 2023, Synthesis and investigation of nonlinear optical properties of Azo-SR8 compound using visible laser beams, Opt. Mater., 143, 114293.

[11] Saleh, M.G.A., El‐Sayed, W.A., Zayed, E.M., Shawky, M., and Mohamed, G.G., 2024, Analyzing the structure of the metal complexes of biologically active azo dye ligand, Appl. Organomet. Chem., 38 (4), e7397.

[12] Majhool, S.H., Waheeb, A.S., and Ali Awad, M., 2024, Preparation, spectral characterization, antimicrobial and cytotoxic studies of some transition metal nanocomplexes of a novel azo derivative formed from 2-amino-5-methylthiazol, J. Nanostruct., 14 (2), 411–426.

[13] Nguyen, V.A., Vu, T.N.A., Polyanskaya, N., Utenyshev, A., Shilov, G., Vasil'eva, M., Anh Tien, N., and Kovalchukova, O., 2023, Structure and properties of some S-containing azo-derivatives of 5-pyrazolone and their Cu(II), Co(II), and Ni(II) metal complexes, Inorg. Chem. Commun., 158, 111648.

[14] Khedr, A.M., Gouda, A.A., and El‑Ghamry, H.A., 2022, Nano-synthesis approach, elaborated spectral, biological activity and in silico assessment of novel nano-metal complexes based on sulfamerazine azo dye, J. Mol. Liq., 352, 118737.

[15] Gultepe, O., and Atay, F., 2024, Investigation of structural, optical, surface, electrochemical and corrosion properties of ZnO and AZO nanorod arrays for dye absorption applications, Opt. Mater., 154, 115748.

[16] Sahar, Y.J., Mohammed, H., and Al-Abady, Z.N., 2023, Synthesis and characterization of new metal complexes containing azo-indole moiety and anti-leukemia human (HL-60) study of its palladium(II) complex, Results Chem., 5, 100847.

[17] Yang, Y., Li, Y., Lu, Y., Chen, Z., and Luo, R., 2024, A three-dimensional azo-bridged porous porphyrin framework supported silver nanoparticles as the state-of-the-art catalyst for the carboxylative cyclization of propargylic alcohols with CO2 under ambient conditions, ACS Catal., 14 (13), 10344–10354.

[18] Ramamurthy, K., Priya, P.S., Murugan, R., and Arockiaraj, J., 2024, Hues of risk: Investigating genotoxicity and environmental impacts of azo textile dyes, Environ. Sci. Pollut. Res., 31 (23), 33190–33211.

[19] Gvoic, V., Prica, M., Turk Sekulic, M., Pap, S., Paunovic, O., Kulic Mandic, A., Becelic-Tomin, M., Vukelic, D., and Kerkez, D., 2024, Synergistic effect of Fenton oxidation and adsorption process in treatment of azo printing dye: DSD optimization and reaction mechanism interpretation, Environ. Technol., 45 (9), 1781–1800.

[20] Chauhan, K.V., Rawal, S., Patel, N.P., and Vyas, V., 2024, The impact of temperature and power variation on the optical, wettability, and anti-icing characteristics of AZO coatings, Crystals, 14 (4), 368.

[21] Hamasha, M.M., Bani-Irshid, A.H., and Masadeh, A., 2024, Evaluation of thermal stresses on thin Al and AZO films deposited on polyethylene terephthalate substrates for flexible electronics applications, Mater. Sci. Eng., B, 299, 117056.

[22] Bagdatli, E., and Tastemel, B., 2024, Novel azo- and bisazo-5-pyrazolone dyes and their application as a colorimetric chemosensor for naked eye recognition of Cu2+, J. Mol. Struct., 1314, 138765.

[23] Ozel, K., and Yildiz, A., 2024, High-performance transparent AZO UV photodetectors, Opt. Quantum Electron., 56 (7), 1258.

[24] Bilbao Zubiri, I., and Carré, A.L., 2023, Giving a New Status to a Dyes Collection: A Contribution to the Chromotope Project, Heritage, 6 (2), 2202–2219.

[25] Zobeidi, A., Neghmouche Nacer, S., Atia, S., Kribaa, L., Kerassa, A., Kamarchou, A., AlNoaimi, M., Ghernaout, D., Ali, M.A., Lagum, A.A., and Elboughdiri, N., 2023, Corrosion inhibition of azo compounds derived from Schiff bases on mild steel (XC70) in (HCl, 1 M DMSO) medium: An experimental and theoretical study, ACS Omega, 8 (24), 21571–21584.

[26] Weng, S., Cao, Z., Song, K., Chen, W., Jiang, R., Rogachev, A.A., Yarmolenko, M.A., Zhou, J., and Zhang, H., 2024, Constructing an Al3+/Zn2+-based solid electrolyte interphase to enable extraordinarily stable Al3+-based electrochromic devices, ACS Appl. Mater. Interfaces, 16 (14), 18164–18172.

[27] Yaman, M., Renkli̇tepe, C., Kaplan, G., Sakalli, Y., Seferoğlu, N., Şahi̇n, E., and Seferoğlu, Z., 2024, D-π-A azo dyes bearing thiazole-diphenylamine units: Synthesis, photophysical and molecular structure properties, and use for dyeing of polyester fabrics, Dyes Pigm., 222, 111840.

[28] Gupta, P.O., and Sekar, N., 2024, Photophysical properties and photostability of novel 2-amino-3-benzothiazole thiophene-based azo disperse dyes, J. Photochem. Photobiol., A, 457, 115924.

[29] Brillas, E., and Oliver, R., 2024, Development of persulfate-based advanced oxidation processes to remove synthetic azo dyes from aqueous matrices, Chemosphere, 355, 141766.

[30] Luo, C., Xu, G.L., Ji, X., Hou, S., Chen, L., Wang, F., Jiang, J., Chen, Z., Ren, Y., Amine, K., and Wang, C., 2018, Reversible redox chemistry of azo compounds for sodium‐ion batteries, Angew. Chem. Int. Ed., 57 (11), 2879–2883.

[31] Pal, S., Guin, A.K., Chakraborty, S., and Paul, N.D., 2024, Zn(II)‐stabilized azo‐anion radical catalyzed sustainable C−C bond formation: Regioselective alkylation of fluorene, oxindole, and indoles, ChemCatChem, 16 (10), e202400026.

[32] Mondal, B., and Mukherjee, P.S., 2018, Cage encapsulated gold nanoparticles as heterogeneous photocatalyst for facile and selective reduction of nitroarenes to azo compounds, J. Am. Chem. Soc., 140 (39), 12592–12601.

[33] Sumrit, P., Kamavichanurat, S., Joopor, W., Wattanathana, W., Nakornkhet, C., and Hormnirun, P., 2024, Aluminium complexes of phenoxy-azo ligands in the catalysis of rac-lactide polymerization, Dalton Trans., 53 (33), 13854–13870.

[34] Khaled, K.F., 2010, Electrochemical behavior of nickel in nitric acid and its corrosion inhibition using some thiosemicarbazone derivatives, Electrochim. Acta, 55 (19), 5375–5383.

[35] Madkour, L.H., Kaya, S., and Obot, I.B., 2018, Computational, Monte Carlo simulation and experimental studies of some arylazotriazoles (AATR) and their copper complexes in corrosion inhibition process, J. Mol. Liq., 260, 351–374.

[36] Hadisaputra, S., Purwoko, A.A., Savalas, L.R.T., Prasetyo, N., Yuanita, E., and Hamdiani, S., 2020, Quantum chemical and Monte Carlo simulation studies on inhibition performance of caffeine and its derivatives against corrosion of copper, Coatings, 10 (11), 1086.

[37] Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J.V., Cioslowski, J., and Fox, D.J., 2013, Gaussian-09 Revision D.01, Gaussian, Inc., Wallingford, CT.

[38] Dennington, R., Keith, T.A., and Millam, J.M., 2009, GaussView 5.0, Semichem Inc. Shawnee Mission, KS, US.

[39] Hasan, N., 2024, Spectroscopy, thermal analysis, bioavailability and anticancer activity of copper(II) complex with heterocyclic azo dye ligand, Cent. Asian J. Med. Nat. Sci., 5 (1), 93–105.

[40] Abdulrazzaq, A.G., and Al-Hamdani, A.A.S., 2024, Synthesis, characterization, thermal analysis study and antioxidant activity for some metal ions Cr(III), Fe(III), Mn(II) and Pd(II) complexes with azo dye derived from p-methyl-2-hydroxybenzaldehyde, Baghdad Sci. J., 21 (6), 1960.

[41] Koopmans, T., 1934, Über die zuordnung von wellenfunktionen und eigenwerten zu den einzelnen elektronen eines atoms, Physica, 1 (1-6), 104–113.

[42] Islam, N., and Chandra Ghosh, D., 2011, A new algorithm for the evaluation of the global hardness of polyatomic molecules, Mol. Phys., 109 (6), 917–931.

[43] Sharma, S.J., Khan, Z.N., Zambare, A.A., Bagal, M.S., Barshi, A.S., Rindhe, S.M., and Sekar, N., 2024, Synthesis, spectroscopic, DFT, TD-DFT, and dyeing studies of 2-amino-3-cyano thiophene-based azo dyes on wool and nylon, Dyes Pigm., 228, 112209.

[44] Hadisaputra, S., Purwoko, A.A., and Hamdiani, S., 2021, Substituents effects on the corrosion inhibition performance of pyrazolone against carbon steels: quantum chemical and Monte Carlo simulation studies, Int. J. Corros. Scale Inhib., 10 (1), 419–440.

[45] Rodríguez, J.A., Cruz-Borbolla, J., Arizpe-Carreón, P.A., and Gutiérrez, E., 2020, Mathematical models generated for the prediction of corrosion inhibition using different theoretical chemistry simulations, Materials, 13 (24), 5656.

[46] Tanaka, D., Sawai, S., Hattori, S., Nozaki, Y., Yoon, D.H., Fujita, H., Sekiguchi, T., Akitsu, T., and Shoji, S., 2020, Microdroplet synthesis of azo compounds with simple microfluidics-based pH control, RSC Adv., 10 (64), 38900–38905.

[47] Oukhrib, R., Abdellaoui, Y., Berisha, A., Abou Oualid, H., Halili, J., Jusufi, K., Ait El Had, M., Bourzi, H., El Issami, S., Asmary, F.A., Parmar, V.S., and Len, C., 2021, DFT, Monte Carlo and molecular dynamics simulations for the prediction of corrosion inhibition efficiency of novel pyrazolylnucleosides on Cu(111) surface in acidic media, Sci. Rep., 11 (1), 3771.

[48] Dembitsky, V.M., Gloriozova, T.A., and Poroikov, V.V., 2017, Pharmacological and predicted activities of natural azo compounds, Nat. Prod. Bioprospect., 7, 151–169.

[49] Velasco, M.I., Kinen, C.O., Hoyos de Rossi, R., and Rossi, L.I., 2011, A green alternative to synthetize azo compounds, Dyes Pigm., 90 (3), 259–264.

[50] Tassaoui, K., Damej, M., Molhi, A., Berisha, A., Errili, M., Ksama, S., Mehmeti, V., El Hajjaji, S., and Benmessaoud, M., 2022, Contribution to the corrosion inhibition of Cu–30Ni copper–nickel alloy by 3-amino-1,2,4-triazole-5-thiol (ATT) in 3% NaCl solution. Experimental and theoretical study (DFT, MC and MD), Int. J. Corros. Scale Inhib., 11 (1), 221–244.

[51] Ali, S.H., Mohammed, S.S., Obaid, H.T., and Gamagedara, S., 2024, Syntheses, characterisation, thermal analysis and theoretical studies of some imino ethanone metal complexes, Baghdad Sci. J., 21 (12), 3661–3672.

[52] Obaid, H.T., Mutar, M.M., and Ali, S.H., 2025, Sulfasalazine as a corrosion inhibitor on carbon steel metal surfaces in acidic media using the hydrogen evolution method: Experimental and theoretical studies, Indones. J. Chem., 25 (1), 90–99.

[53] Khudhair, Z.T., and Shihab, M.S., 2022, Study of some azo derivatives as corrosion inhibitors for mild steel in 1 M H2SO4, Surf. Eng. Appl. Electrochem., 58 (6), 708–719.

[54] Dhaef, H.K., Al-Asadi, R.H., Shenta, A.A., and Mohammed, M.K., 2021, Novel bis maleimide derivatives containing azo group: Synthesis, corrosion inhibition, and theoretical study, Indones. J. Chem., 21 (5), 1212–1220.

[55] Albo Hay Allah, M.A., Balakit, A.A., Salman, H.I., Abdulridha, A.A., and Sert, Y., 2023, New heterocyclic compound as carbon steel corrosion inhibitor in 1 M H2SO4, high efficiency at low concentration: Experimental and theoretical studies, J. Adhes. Sci. Technol., 37 (3), 525–547.

[56] Murmu, M., Murmu, N.C., Ghosh, M., and Banerjee, P., 2022, Density functional theory, Monte Carlo simulation and non-covalent interaction study for exploring the adsorption and corrosion inhibiting property of double azomethine functionalised organic molecules, J. Adhes. Sci. Technol., 36 (23-24), 2732–2760.

[57] Abdou, M.M., Younis, O., and El-Katori, E.E., 2022, Synthesis, experimental and theoretical studies of two aryl-azo derivatives clubbed with 2-acetylphenol and their application as novel luminescent coatings with high anticorrosion efficiency, J. Mol. Liq., 360, 119506.

[58] Mustafa Mamad, D., Hussein Azeez, Y., Khalid Kaka, A., Mahmood Ahmed, K., Anwar Omer, R., and Omer Ahmed, L., 2024, The inhibitor activity of some azo compound derivatives using density functional theory and molecular dynamics simulations, Comput. Theor. Chem., 1237, 114645.



DOI: https://doi.org/10.22146/ijc.101069

Article Metrics

Abstract views : 1279 | views : 585 | views : 342


Copyright (c) 2025 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.