Synthesis of Zinc-Nitrogen-Codoped Zirco-Titania Composite (Zn-N-Codoped ZT) as a Photocatalyst for Photodegradation of Phenol Under Visible Light Irradiation

https://doi.org/10.22146/ijc.101519

Nadya Putri Utami(1), Rian Kurniawan(2), Mokhammad Fajar Pradipta(3), Akhmad Syoufian(4*)

(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia; Institute of Chemical Technology, Universität Leipzig, Linnéstr. 3, Leipzig 04103, Germany
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(4) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(*) Corresponding Author

Abstract


Zinc (Zn) and nitrogen (N) were introduced as codopants in zirco-titania (Zn-N-codoped ZT) composite photocatalyst. This research primarily aimed to investigate the codoping effect of Zn and N in ZT composite for the photodegradation of phenol under visible light irradiation. The composite was prepared through the sol-gel method, where a suspension of ZrO2 mixed with Zn dopant (wZn/wTi = 1–9%) and N dopant (wN/wTi = 10%) was added dropwise to TTIP in ethanol solution. Calcination was conducted at the temperature of 500, 700, and 900 °C. FTIR shows an increasing absorbance at 1095 cm−1 as the increasing Zn up to 5%. XRD reveals that Zn-N cooping influences anatase and rutile crystallization above 700 °C. SEM-EDX of 5Zn-N-ZT-500 displays a spherical and homogeneous morphology. Photodegradation of 10 mg L−1 phenol solution under visible light irradiation was conducted to evaluate the photocatalytic activity. The composite with 5% Zn and 10% N calcined at 900 °C achieved the lowest band gap of 2.90 eV. The highest phenol degradation percentage after 120 min irradiation, 51.96%, was attained by the composite containing 5% Ni and 10% N calcined at 500 °C (kobs = 8.4 × 10−3 min−1).

Keywords


codoping; phenol; photodegradation; Zn-N-codoped ZT

Full Text:

Full Text PDF


References

[1] Chen, X., Guo, R., Pan, W., Yuan, Y., Hu, X., Bi, Z., and Wang, J., 2022, A novel double S-scheme photocatalyst Bi7O9I3/Cd0.5Zn0.5S QDs/WO3−x with efficient full-spectrum-induced phenol photodegradation, Appl. Catal., B, 318, 121839.

[2] Prabha, I., and Lathasree, S., 2014, Photodegradation of phenol by zinc oxide, titania and zinc oxide-titania composites: Nanoparticle synthesis, characterization and comparative photocatalytic efficiencies, Mater. Sci. Semicond. Process., 26, 603–613.

[3] Xue, Y., Zhong, H., Liu, B., Zhao, R., Ma, J., Chen, Z., Li, K., and Zuo, X., 2022, Colorimetric sensing strategy for detection of cysteine, phenol cysteine, and phenol based on synergistic doping of multiple heteroatoms into sponge-like Fe/NPC nanozymes, Anal. Bioanal. Chem., 414 (14), 4217–4225.

[4] Li, H., Bharti, B., Manikandan, V., AlSalhi, M.S., Asemi, N.N., Wang, Y., Jin, W., and Ouyang, F., 2023, Nitrogen–fluorine co-doped TiO2/SiO2 nanoparticles for the photocatalytic degradation of acrylonitrile: Deactivation and regeneration, Chemosphere, 340, 139986.

[5] Krishnan, A., Swarnalal, A., Das, D., Krishnan, M., Saji, V.S., and Shibli, S.M.A., 2024, A review on transition metal oxides based photocatalysts for degradation of synthetic organic pollutants, J. Environ. Sci., 139, 389–417.

[6] Rehman, G.U., Tahir, M., Goh, P.S., Ismail, A.F., Hafeez, A., and Khan, I.U., 2021, Enhancing the photodegradation of phenol using Fe3O4/SiO2 binary nanocomposite mediated by silane agent, J. Phys. Chem. Solids, 153, 110022.

[7] Bharali, D., Saikia, S., Devi, R., Choudary, B.M., Gour, N.K., and Deka, R.C., 2023, Photocatalytic degradation of phenol and its derivatives over ZnFe layered double hydroxide, J. Photochem. Photobiol., A, 438, 114509.

[8] Qi, K., Wang, Z., Xie, X., and Wang, Z., 2023, Photocatalytic performance of pyrochar and hydrochar in heterojunction photocatalyst for organic pollutants degradation: Activity comparison and mechanism insight, Chem. Eng. J., 467, 143424.

[9] Samarasinghe, L.V., Muthukumaran, S., and Baskaran, K., 2024, Recent advances in visible light-activated photocatalysts for degradation of dyes: A comprehensive review, Chemosphere, 349, 140818.

[10] Mohamed, A., Yousef, S., Nasser, W.S., Osman, T.A., Knebel, A., Sánchez, E.P.V., and Hashem, T., 2020, Rapid photocatalytic degradation of phenol from water using composite nanofibers under UV, Environ. Sci. Eur., 32 (1), 160.

[11] Grosu, E.F., Cârja, G., and Froidevaux, R., 2018, Development of horseradish peroxidase/layered double hydroxide hybrid catalysis for phenol degradation, Res. Chem. Intermed., 44 (12), 7731–7752.

[12] Samriti, S., Tyagi, R., Ruzimuradov, O., and Prakash, J., 2023, Fabrication methods and mechanisms for designing highly-efficient photocatalysts for energy and environmental applications, Mater. Chem. Phys., 307, 128108.

[13] Ramamoorthy, S., Das, S., Balan, R., and Lekshmi, I.C., 2021, TiO2-ZrO2 nanocomposite with tetragonal zirconia phase and photocatalytic degradation of Alizarin Yellow GG azo dye under natural sunlight, Mater. Today: Proc., 47, 4641–4646.

[14] Yang, J., Liu, Z., Jing, J., Zhang, X., Fu, Y., Li, M., and Wang, H., 2024, Novel superhydrophobic sponge with flower-like architecture for oily emulsion separation and organic pollutants photodegradation, J. Environ. Chem. Eng., 12 (3), 112680.

[15] Barrocas, B., Monteiro, O.C., Nunes, M.R., and Silvestre, A.J., 2019, Influence of Re and Ru doping on the structural, optical and photocatalytic properties of nanocrystalline TiO2, SN Appl. Sci., 1 (6), 556.

[16] Zhang, Z., Zhao, C., Duan, Y., Wang, C., Zhao, Z., Wang, H., and Gao, Y., 2020, Phosphorus-doped TiO2 for visible light-driven oxidative coupling of benzyl amines and photodegradation of phenol, Appl. Surf. Sci., 527, 146693.

[17] Hayati, R., Kurniawan, R., Prasetyo, N., Sudiono, S., and Syoufian, A., 2022, Codoping effect of nitrogen (N) to iron (Fe) doped zirconium titanate (ZrTiO4) composite toward its visible light responsiveness as photocatalysts, Indones. J. Chem., 22 (3), 692–702.

[18] Ajmal, A., Majeed, I., Malik, R.N., Idriss, H., and Nadeem, M.A., 2014, Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: A comparative overview, RSC Adv., 4 (70), 37003–37026.

[19] Aimeur, M., Baudu, M., Zermane, F., Joussein, E., and Bouras, O., 2021, Evaluation of the use of free or supported phenalenone based on natural halloysite for phenol photodegradation in aqueous solution, J. Photochem. Photobiol., A, 404, 112904.

[20] Van Thuan, D., Ngo, H.L., Thi, H.P., and Chu, T.T.H., 2023, Photodegradation of hazardous organic pollutants using titanium oxides-based photocatalytic: A review, Environ. Res., 229, 116000.

[21] Rehman, S., Ullah, R., Butt, A.M., and Gohar, N.D., 2009, Strategies of making TiO2 and ZnO visible light active, J. Hazard. Mater., 170 (2-3), 560–569.

[22] Pirzada, B.M., Mir, N.A., Qutub, N., Mehraj, O., Sabir, S., and Muneer, M., 2015, Synthesis, characterization, and optimization of photocatalytic activity of TiO2/ZrO2 nanocomposite heterostructures, Mater. Sci. Eng., B, 193, 137–145.

[23] Akpan, U.G., and Hameed, B.H., 2009, Parameters affecting the photocatalytic degradation of dyes using TiO₂-based photocatalysts: A review, J. Hazard. Mater., 170 (2-3), 520–529.

[24] Bafaqeer, A., Amin, N.A.S., Tahir, M., Ummer, A.C., Thabit, H.A., Theravalappil, R., Usman, J., and Ahmad, N., 2024, Construction of glucose precursor carbon/TiO2 heterojunction with high ligand-to-metal charge transfer (LMCT) for visible light driven CO2 reduction, Chem. Eng. Res. Des., 201, 353–361.

[25] Kavetskyy, T., Smutok, O., Demkiv, O., Kukhazh, Y., Stasyuk, N., Leonenko, E., Kiv, A., Kobayashi, Y., Kinomura, A., Šauša, O., Gonchar, M., and Katz, E., 2022, Improvement of laccase biosensor characteristics using sulfur-doped TiO2 nanoparticles, Bioelectrochemistry, 147, 108215.

[26] Sulaikhah, E.F., Kurniawan, R., Pradipta, M.F., Trisunaryanti, W., and Syoufian, A., 2020, Cobalt doping on zirconium titanate as a potential photocatalyst with visible-light-response, Indones. J. Chem., 20 (4), 911–918.

[27] Ruzimuradov, O., Musaev, K., Mamatkulov, S., Butanov, K., Gonzalo-Juan, I., Khoroshko, L., Turapov, N., Nurmanov, S., Razzokov, J., Borisenko, V., and Riedel, R., 2023, Structural and optical properties of sol-gel synthesized TiO2 nanocrystals: Effect of Ni and Cr (co)doping, Opt. Mater., 143, 114203.

[28] Esfandian, H., Mirzaei, S., Chari, A.S., Ghadi, R.A., and Moqadam, I.H., 2024, Photocatalytic degradation of chlorpyrifos pesticide in aqueous solution using Cu-doped TiO2/GO photocatalysis vicinity of UV and visible light, Mater. Sci. Eng., B, 305, 117385.

[29] Meftahi, M., Jafari, S.H., and Habibi-Rezaei, M., 2023, Fabrication of Mo-doped TiO2 nanotube arrays photocatalysts: The effect of Mo dopant addition time to an aqueous electrolyte on the structure and photocatalytic activity, Ceram. Int., 49 (7), 11411–11422.

[30] Alifi, A., Kurniawan, R., and Syoufian, A., 2020, Zinc-doped titania embedded on the surface of zirconia: A potential visible-responsive photocatalyst material, Indones. J. Chem., 20 (6), 1374–1381.

[31] Li, P., Zheng, D., Gao, M., Zuo, X., Sun, L., Zhou, Q., and Lin, J., 2021, Bimetallic MOF-templated fabrication of porous Zn, N co-doped Mo2C for an efficient hydrogen evolution reaction, ACS Appl. Energy Mater., 4 (9), 8875–8882.

[32] Mittal, A., Mari, B., Sharma, S., Kumari, V., Maken, S., Kumari, K., and Kumar, N., 2019, Non-metal modified TiO2: A step towards visible light photocatalysis, J. Mater. Sci. Mater. Electron., 30 (4), 3186–3207.

[33] Yaacob, N., Sean, G.P., Mohd Nazri, N.A., Ismail, A.F., Zainol Abidin, M.N., and Subramaniam, M.N., 2021, Simultaneous oily wastewater adsorption and photodegradation by ZrO2–TiO2 heterojunction photocatalysts, J. Water Process. Eng., 39, 101644.

[34] Jeong, W.H., Lee, H.E., Ryu, M.W., Kim, K., Kim, Y.D., and Seo, H.O., 2024, Phenol degradation on the surface of mesoporous TiO2 particles via ligand-to-metal charge transfer under visible light irradiation, Chem. Phys. Lett., 840, 141162.

[35] Khan, S., Kim, J., Sotto, A., and Van der Bruggen, B., 2015, Humic acid fouling in a submerged photocatalytic membrane reactor with binary TiO2–ZrO2 particles, J. Ind. Eng. Chem., 21, 779–786.

[36] Długosz, O., Szostak, K., and Banach, M., 2020, Photocatalytic properties of zirconium oxide–zinc oxide nanoparticles synthesised using microwave irradiation, Appl. Nanosci., 10 (3), 941–954.

[37] Li, Y., Lin, J., and Wang, G., 2019, La2O3/Fe2O3-CeO2 composite oxide catalyst and its performance, Adv. Mater. Phys. Chem., 9 (12), 219–233.

[38] Suman, S., Singh, S., Ankita, A., Kumar, A., Kataria, N., Kumar, S., and Kumar, P., 2021, Photocatalytic activity of α-Fe2O3@CeO2 and CeO2@α-Fe2O3 core-shell nanoparticles for degradation of Rose Bengal dye, J. Environ. Chem. Eng., 9 (5), 106266.

[39] Arafati, A., Borhani, E., Nourbakhsh, S.M.S., and Abdoos, H., 2019, Synthesis and characterization of tetragonal/monoclinic mixed phases nanozirconia powders, Ceram. Int., 45 (10), 12975–12982.

[40] Zhang, H., Wang, D., Han, Y., Tang, Q., Wu, H., and Mao, N., 2018, High photoactivity rutile-type TiO2 particles co-doped with multiple elements under visible light irradiation, Mater. Res. Express, 5 (10), 105015.

[41] Syoufian, A., and Kurniawan, R., 2023, Visible-light-induced photodegradation of methylene blue using Mn,N-codoped ZrTiO4 as photocatalyst, Indones. J. Chem., 23 (3), 661–670.

[42] Bashirom, N., Tan, W.K., Kawamura, G., Matsuda, A., and Lockman, Z., 2022, Formation of self-organized ZrO2–TiO2 and ZrTiO4–TiO2 nanotube arrays by anodization of Ti–40Zr foil for Cr(VI) removal, J. Mater. Res. Technol., 19, 2991–3003.

[43] Yodsomnuk, P., Junjeam, K., and Termtanun, M., 2018, Photoactivity of Fe and Zn-doped TiO2 in phenol degradation under visible light, MATEC Web Conf., 192, 03047.

[44] Moustafa, M., Wasnick, A., Janowitz, C., and Manzke, R., 2017, Temperature shift of the absorption edge and urbach tail of ZrSxSe2−x single crystals, Phys. Rev. B, 95 (24), 245207.

[45] Hao, D., Song, Y.X., Zhang, Y., and Fan, H.T., 2021, Nanocomposites of reduced graphene oxide with pure monoclinic-ZrO2 and pure tetragonal-ZrO2 for selective adsorptive removal of oxytetracycline, Appl. Surf. Sci., 543, 148810.

[46] Obaidullah, M., Furusawa, T., Siddiquey, I.A., Bahadur, N.M., Sato, M., and Suzuki, N., 2018, A fast and facile microwave irradiation method for the synthesis of ZnO@ZrO2 core-shell nanocomposites and the investigation of their optical properties, Adv. Powder Technol., 29 (8), 1804–1811.

[47] Waweru, G.S., Kiprotich, S., and Waithaka, P., 2024, Effects of different Zn doping concentration on the optical and structural properties of TiO2 nanoparticles, Nanosci. Nanotechnol., 13 (1), 1–9.

[48] Andita, K.R., Kurniawan, R., and Syoufian, A., 2019, Synthesis and characterization of Cu-doped zirconium titanate as a potential visible-light responsive photocatalyst, Indones. J. Chem., 19 (3), 761–766.

[49] Afonso, C., Segundo, I.R., Lima, O., Landi, S., Homem, N., Costa, M.F.M., Freitas, E., and Carneiro, J., 2022, Optical, structural, morphological and chemical properties of doped TiO2 nanoparticles with FeCl3, J. Phys.: Conf. Ser., 2407 (1), 012001.

[50] Lhimr, S., Bouhlassa, S., and Ammary, B., 2021, Influence of calcination temperature on size, morphology and optical properties of ZnO/C composite synthesized by a colloidal method, Indones. J. Chem., 21 (3), 537–545.

[51] Hamad, H., Bailón-García, E., Pérez-Cadenas, A.F., Maldonado-Hódar, F.J., and Carrasco-Marín, F., 2020, ZrO2-TiO2/carbon core-shell composites as highly efficient solar-driven photo-catalysts: An approach for removal of hazardous water pollutants, J. Environ. Chem. Eng., 8 (5), 104350.

[52] Guerrero-Araque, D., Ramírez-Ortega, D., Acevedo-Peña, P., Tzompantzi, F., Calderón, H.A., and Gómez, R., 2017, Interfacial charge-transfer process across ZrO2-TiO2 heterojunction and its impact on photocatalytic activity, J. Photochem. Photobiol., A, 335, 276–286.

[53] Aware, D.V., and Jadhav, S.S., 2016, Synthesis, characterization and photocatalytic applications of Zn-doped TiO2 nanoparticles by sol–gel method, Appl. Nanosci., 6 (7), 965–972.

[54] Liu, H., Su, Y., Hu, H., Cao, W., and Chen, Z., 2013, An ionic liquid route to prepare mesoporous ZrO2–TiO2 nanocomposites and study on their photocatalytic activities, Adv. Powder Technol., 24 (3), 683–688.

[55] Fu, N., Chen, H., Chen, R., Ding, S., and Ren, X., 2023, Effect of calcination temperature on the structure, crystallinity, and photocatalytic activity of core-shell SiO2@TiO2 and mesoporous hollow TiO2 composites, Coatings, 13 (5), 852.

[56] Vasiljević, Z., Dojčinović, M.P., Vujančević, J.D., Spreitzer, M., Kovač, J., Bartolić, D., Marković, S., Janković-Čaštvan, I., Tadić, N.B., and Nikolić, M.V., 2021, Exploring the impact of calcination parameters on the crystal structure, morphology, and optical properties of electrospun Fe2TiO5 nanofibers, RSC Adv., 11 (51), 32358–32368.

[57] Kayani, Z.N., Saleemi, F., and Batool, I., 2015, Effect of calcination temperature on the properties of ZnO nanoparticles, Appl. Phys. A, 119 (2), 713–720.

[58] Padmamalini, N., and Ambujam, K., 2016, Structural and dielectric properties of ZrO2–TiO2–V2O5 nanocomposite prepared by CO-precipitation calcination method, Mater. Sci. Semicond. Process., 41, 246–251.

[59] Gaber, A.A., Abd El-Hamid, H.K., Ngida, R.E.A., Sadek, H.E.H., and Khattab, R.M., 2024, Synthesis, characterization and corrosive resistance of ZnO and ZrO2 coated TiO2 substrate prepared via polymeric method and microwave combustion, Ceram. Int., 50 (20, Part B), 38917–38932.

[60] Aguirre-Cortés, J.M., Munguía-Ubierna, Á., Moral-Rodríguez, A., Pérez-Cadenas, A.F., Carrasco-Marín, F., and Bailón-García, E., 2024, Size-miniaturization of TiO2-ZrO2 coupled semiconductors to develop highly efficient visible-driven photocatalysts for the degradation of drugs in wastewater, Appl. Surf. Sci., 670, 160609.

[61] Sakfali, J., Ben Chaabene, S., Akkari, R., Dappozze, F., Berhault, G., Guillard, C., and Saïd Zina, M., 2022, High photocatalytic activity of aerogel tetragonal and monoclinic ZrO2 samples, J. Photochem. Photobiol., A, 430, 113970.

[62] Thakur, S., Sareen, S., Verma, M., Kaur, K., and Mutreja, V., 2024, Synthesis of elusive monoclinic ZrO2 nanostructures via hydrothermal treatment, J. Inorg. Organomet. Polym. Mater., 34 (1), 61–78.

[63] Shishodia, G., Gupta, S., Pahwa, N., and Shishodia, P.K., 2024, ZrO2 nanoparticles synthesized by the sol–gel method: Dependence of size on pH and annealing temperature, J. Electron. Mater., 53 (9), 5159–5168.

[64] Muslim, M.I., Kurniawan, R., Pradipta, M.F., Trisunaryanti, W., and Syoufian, A., 2021, The effects of manganese dopant content and calcination temperature on properties of titania-zirconia composite, Indones. J. Chem., 21 (4), 882–890.

[65] Muzammil, P., Basha, S.M., and Muhammed, G.S., 2020, Structural and magnetic properties of Fe-doped GaN by sol-gel technique, J. Supercond. Novel Magn., 33 (9), 2767–2771.

[66] Huang, K., Chen, L., Xiong, J., and Liao, M., 2012, Preparation and characterization of visible-light-activated Fe-N co-doped TiO2 and its photocatalytic inactivation effect on leukemia tumors, Int. J. Photoenergy, 2012 (1), 631435.

[67] Jaiswal, R., Bharambe, J., Patel, N., Dashora, A., Kothari, D.C., and Miotello, A., 2015, Copper and nitrogen co-doped TiO2 photocatalyst with enhanced optical absorption and catalytic activity, Appl. Catal., B, 168-169, 333–341.

[68] RamezaniSani, S., Rajabi, M., and Mohseni, F., 2020, Influence of nitrogen doping on visible light photocatalytic activity of TiO2 nanowires with anatase-rutile junction, Chem. Phys. Lett., 744, 137217.

[69] Kurniawan, R., Sudiono, S., Trisunaryanti, W., and Syoufian, A., 2019, Synthesis of iron-doped zirconium titanate as a potential visible-light responsive photocatalyst, Indones. J. Chem., 19 (2), 454–460.

[70] Syoufian, A., and Kurniawan, R., 2024, Codoping of nickel and nitrogen in ZrO₂-TiO2 composite as photocatalyst for methylene blue degradation under visible light irradiation, Indones. J. Chem., 24 (4), 1218–1227.

[71] Emeline, A.V., Zhang, X., Murakami, T., and Fujishima, A., 2012, Activity and selectivity of photocatalysts in photodegradation of phenols, J. Hazard. Mater., 211-212, 154–160.



DOI: https://doi.org/10.22146/ijc.101519

Article Metrics

Abstract views : 246 | views : 130


Copyright (c) 2025 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.