The Study of Removal of Remazol Red with Biomaterial Paras Stone and Opuntia ficus-indica by Coagulation-Flocculation

https://doi.org/10.22146/ijc.102760

Siti Hulwati(1), Qonitah Fardiyah(2*), Barlah Rumhayati(3), Vita Dwi Anggraini(4)

(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya, Jl. Veteran, Malang 65145, Indonesia
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya, Jl. Veteran, Malang 65145, Indonesia
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya, Jl. Veteran, Malang 65145, Indonesia
(4) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya, Jl. Veteran, Malang 65145, Indonesia
(*) Corresponding Author

Abstract


The rapid progress of the textile industry sector has an impact on the environment by producing dye waste. The use of synthetic coagulants in processing textile industry waste containing azo dyes can cause residues that are detrimental to the environment. In this research, a technique for processing azo dye was done using natural coagulants. The use of natural coagulants provides several advantages, such as being eco-friendly, abundant, and cost-efficient. The potential of paras stone and Opuntia ficus-indica biomaterials as natural coagulants and flocculants for removing remazol red dye was thoroughly investigated under various conditions, including coagulant dose, the speed of coagulation, and the optimal initial pH of the test solution. The removal of remazol red dye was quantitatively analyzed using a UV-vis spectrophotometer at a wavelength of 520 nm. Findings from the research revealed that the removal efficiency of remazol red dye reached 96.70% with a coagulant dose of 2.75 g of paras stone and 2.00 g of O. ficus-indica at an optimal coagulation speed of 500 rpm and a pH of 4 for the testing solution. The results of this study provide an engineering perspective on optimizing operational parameters for removing remazol red in aquatic environments.


Keywords


dyes; industrial waste; environment; coagulation; flocculation

Full Text:

Full Text PDF


References

[1] Shindhal, T., Rakholiya, P., Varjani, S., Pandey, A., Ngo, H.H., Guo, W., Ng, H.Y., and Taherzadeh, M.J., 2020, A critical review on advances in the practices and perspectives for the treatment of dye industry wastewater, Bioengineered, 12 (1), 70–87.

[2] Ribeiro, A.R., and Umbuzeiro, G.A., 2014, Effects of a textile azo dye on mortality, regeneration, and reproductive performance of the planarian, Girardia tigrine, Environ. Sci. Eur., 26 (1), 22.

[3] Goswami, D., Mukherjee, J., Mondal, C., and Bhunia, B., 2024, Bioremediation of azo dye: A review on strategies, toxicity assessment, mechanisms, bottlenecks and prospects, Sci. Total Environ., 954, 176426.

[4] Bafana, A., Devi, S.S., and Chakrabarti, T., 2011, Azo dyes: Past, present and the future, Environ. Rev., 19, 350–371.

[5] McLaren K., 1983, The Colour Science of Dyes and Pigments, A. Hilger, Bristol, England.

[6] Bhunia, B., Uday, U.S.P., Bandyopadhyay, T.K., and 2016, Bioremediation and Detoxification Technology for Treatment of Dye(s) from Textile Effluent, Eds., Akcakoca Kumbasar, E.P., and Korlu, A., IntechOpen, Rijeka, Croatia.

[7] Ikram, M., Naeem, M., Zahoor, M., Hanafiah, M.M., Oyekanmi, A.A., Islam, N.U., Ullah, M., Mahnashi, M.H., Ali, A.A., Jalal, N.A., Bantun, F., Momenah, A.M., and Sadiq, A., 2022, Bacillus subtilis: As an efficient bacterial strain for the reclamation of water loaded with textile azo dye orange II, Int. J. Mol. Sci., 23 (18), 10637.

[8] Husain, Q., 2006, Potential applications of the oxidoreductive enzymes in the decolorization and detoxification of textile and other synthetic dyes from polluted water: A review, Crit. Rev. Biotechnol., 26 (4), 201–221.

[9] Ihaddaden, S., Aberkane, D., Boukerroui, A., and Robert, D., 2022, Removal of methylene blue (basic dye) by coagulation-flocculation with biomaterials (bentonite and Opuntia ficus indica), J. Water Process Eng., 49, 102952.

[10] Baptista, A.T.A., Silva, M.O., Gomes, R.G., Bergamasco, R., Vieira, M.F., and Vieira, A.M.S., 2017, Protein fractionation of seeds of Moringa oleifera lam and its application in superficial water treatment, Sep. Purif. Technol., 180, 114–124.

[11] El-taweel, R.M., Mohamed, N., Alrefaey, K.A., Husein, S., Abdel-Aziz, A.B., Salim, A.I., Mostafa, N.G., Said, L.A., Fahim, I.S., and Radwan, A.G., 2023, A review of coagulation explaining its definition, mechanism, coagulant types, and optimization models; RSM, and ANN, Curr. Res. Green Sustainable Chem., 6, 100358.

[12] Prabhakaran, G., Manikandan, M., and Boopathi, M., 2020, Treatment of textile effluents by using natural coagulants, Mater. Today: Proc., 33, 3000–3004.

[13] Bergland, W.H., Dinamarca, C., Toradzadegan, M., Nordgård, A.S.R., Bakke, I., and Bakke, R., 2015, High rate manure supernatant digestion, Water Res., 76, 1–9.

[14] Freitas, T.K.F.S., Oliveira, V.M., de Souza, M.T.F., Geraldino, H.C.L., Almeida, V.C., Fávaro, S.L., and Garcia, J.C., 2015, Optimization of coagulation-flocculation process for treatment of industrial textile wastewater using okra (A. esculentus) mucilage as a natural coagulant, Ind. Crops Prod., 76, 538–544.

[15] Mcyotto, F.O., Wei, Q., Chow, C.W.K., Nadeem, Z., Li, Z., and Liu, J., 2020, Eco-friendly decolorization of cationic dyes by coagulation using natural coagulant bentonite and biodegradable flocculant sodium alginate, J. Earth Sci. Environ. Stud., 5 (2), 51–60.

[16] Fosso-Kankeu, E., Webster, A., Ntwampe, I.O., and Waanders, F.B., 2016, Coagulation/flocculation potential of polyaluminium chloride and bentonite clay tested in the removal of methyl red and crystal violet, Arabian J. Sci. Eng., 42 (4), 1389–1397.

[17] Daud, N.M., Sheikh Abdullah, S.R., Abu Hasan, H., Othman, A.R., and Ismail, N.I., 2023, Coagulation-flocculation treatment for batik effluent as a baseline study for the upcoming application of green coagulants/flocculants towards sustainable batik industry, Heliyon, 9 (6), e17284.

[18] Malathy, R., Rajagopal Sentilkumar, S.R., Prakash, A.R., Das, B.B., Chung, I.M., Kim, S.H., and Prabakaran, M., 2022, Use of industrial silica sand as a fine aggregate in Concrete–An explorative study, Buildings, 12 (8), 1273.

[19] Munasir, M., Triwikantoro, T., Zainuri, M., and Darminto, D., 2015, Synthesis of SiO2 nanopowders containing quartz and cristobalite phases from silica sands, Mater. Sci.-Pol., 33 (1), 47–55.

[20] Bouaouine, O., Bourven, I., Khalil, F., Bressollier, P., and Baudu, M., 2019, Identification and role of Opuntia ficus indica constituents in the flocculation mechanism of colloidal solutions, Sep. Purif. Technol., 209, 892–899.

[21] Stambouli-Essassi, S., Harrabi, R., Bouzid, S., and Harzallah-Skhiri, F., 2015, Evaluation of the efficiency of Opuntia ficus-indica cladode cuttings for vegetative multiplication, Not. Bot. Horti Agrobot. Cluj-Napoca, 43 (2), 521–527.

[22] Halfhide, T., Lalgee, L.J., Singh, K.S., Williams, J., Sealy, M., Manoo, A., and Mohammed, A., 2019, Nutrient removal using spent coconut husks, H2Open J., 2 (1), 125–136.

[23] Choudhary, M., Ray, M.B., and Neogi, S., 2019, Evaluation of the potential application of cactus (Opuntia ficus-indica) as a bio-coagulant for pre-treatment of oil sands process-affected water, Sep. Purif. Technol., 209, 714–724.

[24] Farhaoui, M., and Derraz, M., 2016, Review on optimization of drinking water treatment process, J. Water Resour. Prot., 8 (8), 777–786.

[25] Lee, K.E., Morad, N., Teng, T.T., and Poh, B.T., 2012, Development, characterization and the application of hybrid materials in coagulation/flocculation of wastewater: A review, Chem. Eng. J., 203, 370–386.

[26] BinAhmed, S., Ayoub, G., Al-Hindi, M., and Azizi, F., 2014, The effect of fast mixing conditions on the coagulation–flocculation process of highly turbid suspensions using liquid bittern coagulant, Desalin. Water Treat., 53 (12), 3388–3396.

[27] Li, H., Zhou, Z.A., Xu, Z., and Masliyah, J.H., 2005, Role of acidified sodium silicate in low temperature bitumen extraction from poor-processing oil sand ores, Ind. Eng. Chem. Res., 44 (13), 4753–4761.

[28] Dewi, V.M.I., and Rahmayanti, M., 2022, The interaction mechanism of papaya seeds (Carica papaya L.) as a natural coagulant and remazol red under different pH conditions, Indo J. Chem. Res., 10 (1), 14–18.

[29] Bratby, J., 2016, Coagulation and Flocculation in Water and Wastewater Treatment, IWA Publishing, London, UK.

[30] Nandiyanto, A.B.D., Ragadhita, R., and Fiandini, M., 2023, Interpretation of Fourier transform infrared spectra (FTIR): A practical approach in the polymer/plastic thermal decomposition, Indones. J. Sci. Technol., 8 (1), 113–126.

[31] Quintero-García, M., Gutiérrez-Cortez, E., Bah, M., Rojas-Molina, A., Cornejo-Villegas, M.A., Del Real, A., and Rojas-Molina, I., 2021, Comparative analysis of the chemical composition and physicochemical properties of the mucilage extracted from fresh and dehydrated Opuntia ficus indica cladodes, Foods, 10 (9), 2137.

[32] Otálora, M., Wilches-Torres, A., Lara, C., Cifuentes, G., and Gómez Castaño, J.A., 2022, Use of Opuntia ficus-indica fruit peel as a novel source of mucilage with coagulant physicochemical/molecular characteristics, Polymers, 14 (18), 3832.

[33] de Souza, K.C., da Silva, T.E.P., de Oliveira, L.P.S., Leal, A.N.R., da Cruz Filho, I.J., and da Silva, M.J.F., 2021, Remoção de corantes azo têxteis por meio da biomassa mista Aspergillus niger e casca de laranja (Citrus sinensis L. Osbeck), Sci. Plena, 17 (6), 064202.

[34] Benalia, A., Atime, L., Baatache, O., Khalfaoui, A., Ghomrani, A.F., Derbal, K., and Amirou, S., 2024, Removal of lead in water by coagulation-flocculation process using cactus-based natural coagulant: Optimization and modeling by response surface methodology (RSM), Environ. Monit. Assess., 196 (3), 244.

[35] Tian, X., Dai, L., Wang, Y., Zeng, Z., Zhang, S., Jiang, L., Yang, X., Yue, L., Liu, Y., and Ruan, R., 2019, Influence of torrefaction pretreatment on corncobs: A study on fundamental characteristics, thermal behavior, and kinetic, Bioresour. Technol., 297, 122490.

[36] Gürses, A., Güneş, K., Şahin, E., and Açıkyıldız, M., 2023, Investigation of the removal kinetics, thermodynamics and adsorption mechanism of anionic textile dye, Remazol red RB, with powder pumice, a sustainable adsorbent from wastewater, Front. Chem., 11, 1156577.

[37] Draszewski, C.P., Silveira, N.M., Brondani, M., Cruz, A.S., Rezzadori, K., Mayer, F.D., Abaide, E.R., Mazutti, M.A., Tres, M.V., and Zabot, G.L., 2022, Use of rice husk hydrolyzed by subcritical water to obtain silica from agro-industrial waste, Environ. Eng. Sci., 39 (12), 938–946.

[38] Muliawan, A., Sali, M., Mustakyudin, N., and Lutfi, M., 2019, XRD and XRF characterization of white sand from Sambera Village, East Kalimantan, Indonesia, J. Phys.: Conf. Ser., 1242 (1), 012029.

[39] Ji, G., Peng, X., Wang, S., Li, J., Sun, K., and Chi, H., 2023, Influence of ground quartz sand finesses on the formation of poorly ordered calcium silicate hydrate prepared by dynamically hydrothermal synthesis, Case Stud. Constr. Mater., 20, e02746.

[40] Pawar, R.R., Lalhmunsiama, L., Ingole, P.G., and Lee, S.M., 2020, Use of activated bentonite-alginate composite beads for efficient removal of toxic Cu2+ and Pb2+ ions from the aquatic environment, Int. J. Biol. Macromol., 164, 3145–3154.

[41] Wan, J., Chakraborty, T., Xu, C.C., and Ray, M.B., 2019, Treatment train for tailings pond water using Opuntia ficus-indica as coagulant, Sep. Purif. Technol., 211, 448–455.

[42] Figueirôa, J.A., Menezes Novaes, G.U., de Souza Gomes, H., de Morais Silva, V.L.M., de Moraes Lucena, D., Lima, L.M.R., de Souza, S.A., Viana, L.G.F.C., Rolim, L.A., da Silva Almeida, J.R.G., de Oliveira, A.P., and Gomes, J.P., 2021, Opuntia ficus-indica is an excellent eco-friendly biosorbent for the removal of chromium in leather industry effluents, Heliyon, 7 (6), e07292.

[43] Bouaouine, O., Bourven, I., Khalil, F., and Baudu, M., 2018, Identification of functional groups of Opuntia ficus-indica involved in coagulation process after its active part extraction, Environ. Sci. Pollut. Res., 25 (11), 11111–11119.

[44] Cheikh Rouhou, M., Abdelmoumen, S., Thomas, S., Attia, H., and Ghorbel, D., 2018, Use of green chemistry methods in the extraction of dietary fibers from cactus rackets (Opuntia ficus indica): Structural and microstructural studies, Int. J. Biol. Macromol., 116, 901–910.



DOI: https://doi.org/10.22146/ijc.102760

Article Metrics

Abstract views : 830 | views : 404


Copyright (c) 2025 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.