Toxicity and α-Amylase Inhibitory Potential of Tagetes erecta Leaf Extract: In Vitro and In Silico Approaches

https://doi.org/10.22146/ijc.104489

Herlina Rasyid(1*), Nunuk Hariani Soekamto(2), Bulkis Musa(3), Siswanto Siswanto(4), Arniati Labanni(5), Artania Adnin Tri Suma(6), Nur Hilal A Syahrir(7), Bahrun Bahrun(8), Kadek Susi Badrawati(9), Mohammad Taufik Yusuf(10)

(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Jl. Perintis Kemerdekaan km 10, Makassar 90245, Indonesia
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Jl. Perintis Kemerdekaan km 10, Makassar 90245, Indonesia
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Jl. Perintis Kemerdekaan km 10, Makassar 90245, Indonesia
(4) Department of Statistics, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Jl. Perintis Kemerdekaan km 10, Makassar 90245, Indonesia
(5) Research Center for Environmental and Clean Technology, National Research and Innovation Agency of Republic Indonesia (BRIN), KST Samaun Samadikun, Jl. Sangkuriang No. 15, Bandung 40135, Indonesia
(6) Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(7) Department of Statistics, Faculty of Mathematics and Natural Sciences, Universitas Sulawesi Barat, Jl. Prof. Dr. Baharuddin Lopa, SH, Majene 90311, Indonesia
(8) Research Center for Chemistry, National Research and Innovation Agency (BRIN), KST BJ Habibie, Jl. Puspiptek Serpong, Banten 15314, Indonesia
(9) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Jl. Perintis Kemerdekaan km 10, Makassar 90245, Indonesia
(10) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Jl. Perintis Kemerdekaan km 10, Makassar 90245, Indonesia
(*) Corresponding Author

Abstract


Tagetes erecta is one of traditional herbs with a variety of pharmacological actions. This study attempted to assess the toxicity and antidiabetic activity of T. erecta leaf extract. The extraction was carried out by maceration, then continued with phytochemical analysis. Toxicity of the extract was conducted using the brine shrimp lethality test. The antidiabetic activity was evaluated by α-amylase inhibitory using the 3,5-dinitrosalicylic acid method. The phytochemical of the most active extract was identified using GC-MS and subjected to bind the α-amylase (PDB ID: 2QV4) employing molecular docking. The LC50 values of n-hexane, EtOAc, and MeOH extracts were 33.41, 14.00, and 35.03 ppm, respectively, indicating high toxicity. The antidiabetic activity showed that EtOAc extract has the lowest IC50 value (1053.95 mg/L). Molecular docking analysis revealed the compounds 15 has range of binding energy at −4.07 to −4.83 kcal/mol. Acarbose as a positive control showed the lower binding energy at −5.03 kcal/mol, indicated more effective α-amylase inhibitory. This study revealed that T. erecta leaf extract has significant cytotoxic potential, which may warrant further exploration for anticancer applications. However, the relatively weak α-amylase inhibitory and lower binding affinity compared to acarbose imply limited utility as an antidiabetic agent.


Keywords


antidiabetic; molecular docking; Tagetes erecta; toxicity

Full Text:

Full Text PDF


References

[1] Mir, R.A., Ahanger, M.A., and Agarwal, R.M., 2019, Marigold: From mandap to medicine and from ornamentation to remediation, Am. J. Plant Sci., 10 (2), 309–338.

[2] Rahayuningsih, E., Wikansari, D.A., and Setiawan, H., 2016, Natural colorants from Cosmos sulphureus Cav. and Tagetes erecta L.: Extraction and characterization, ASEAN J. Chem. Eng., 16 (2), 44–58.

[3] Burlec, A.F., Pecio, Ł., Kozachok, S., Mircea, C., Corciovă, A., Vereștiuc, L., Cioancă, O., Oleszek, W., and Hăncianu, M., 2021, Phytochemical profile, antioxidant activity, and cytotoxicity assessment of T. erecta L. flowers, Molecules, 26 (5), 1201.

[4] Madanan, M.T., Shah, I.K., Varghese, G.K., and Kaushal, R.K., 2021, Application of Aztec marigold (T. erecta L.) for phytoremediation of heavy metal polluted lateritic soil, Environ. Chem. Ecotoxicol., 3, 17–22.

[5] Rodda, R., Avvari, S.K., Chidrawar, V.R., and Reddy, T.R., 2013, Pharmacological screening of synergistic antidiabetic efficacy of Tagetes erecta and Foeniculum vulgare, Int. J. Phytopharm., 4 (4), 223–229.

[6] Edy, H.J., Marchaban, M., Wahyuono, S., and Nugroho, A.E., 2017, Formulation and evaluation of hydrogel containing Tagetes erecta L. leaves etanolic extract, Int. J. Curr. Innovation Res., 3 (3), 627–630.

[7] Vedam, V.A.V., Xavier, A.S., and David, D.C., 2019, In-vitro evaluation of antifungal and anticancer properties of T. erecta petal extract, Biomed. Pharmacol. J., 12 (2), 815–823.

[8] Dipa, P., Mall, S.K., Goswami, S., and Singh, R.P., 2021, Promising antidiabetic potential of tagetes species: Updated review, World J. Pharm. Res., 10 (14), 771–783.

[9] Talukdar, N., Kashyap, B., Barman, I., Gogoi, J., and Kalita, P.P., 2023, Review on T. erecta (marigold) with reference to its pharmacological importance, Indian J. Sci., 14 (78), 56465–56472.

[10] George, P., 2011, Concerns regarding the safety and toxicity of medicinal plants - An overview, J. Appl. Pharm. Sci., 1 (6), 40–44.

[11] Pohan, D.J., Marantuan, R.S., and Djojosaputro, M., 2023, Toxicity test of strong drug using the BSLT (brine shrimp lethality test) method, Int. J. Health Sci. Res., 13 (2), 203–209.

[12] Olmedo, D.A., Vasquez, Y., Morán, J.A., De León, E.G., Caballero-George, C., and Solís, P.N., 2024, Understanding the Artemia salina (brine shrimp) test: Pharmacological significance and global impact, Comb. Chem. High Throughput Screening, 27 (4), 545–554.

[13] Marzuki, A., Rahman, L., and Mamada, S.S., 2019, Toxicity test of stem bark extract of banyuru (Pterospermum celebicum Miq.) using BSLT (brine shrimp lethality test) and cream irritation test, Int. J. Phys.: Conf. Ser., 1341 (7), 072018.

[14] Chai, T.T., Yeoh, L.Y., Mohd Ismail, N., Ong, H.C., Abd Manan, F., and Wong, F.C., 2015, Evaluation of glucosidase inhibitory and cytotoxic potential of five selected edible and medicinal ferns, Trop. J. Pharm. Res., 14 (3), 449–454.

[15] Kifle, Z.D., and Enyew, E.F., 2020, Evaluation of in vivo antidiabetic, in vitro α-amylase inhibitory, and in vitro antioxidant activity of leaves crude extract and solvent fractions of Bersama abyssinica Fresen (Melianthaceae), J. Evidence-Based Integr. Med., 25, 2515690X20935827.

[16] Abdiwijoyo, M., Yulianti, E., Limanan, D., and Ferdinal, F., 2021, Phytochemical screening and total antioxidant capacity of marigold leaf extract (T. erecta L.), Adv. Health Sci. Res., 41, 39–44.

[17] Masaenah, E., Elya, B., Setiawan, H., Fadhilah, Z., Wediasari, F., Nugroho, G.A., Elfahmi, E., and Mozef, T., 2021, Antidiabetic activity and acute toxicity of combined extract of Andrographis paniculata, Syzygium cumini, and Caesalpinia sappan, Heliyon, 7 (12), e08561.

[18] Khadayat, K., Marasini, B.P., Gautam, H., Ghaju, S., and Parajuli, N., 2020, Evaluation of the alpha-amylase inhibitory activity of Nepalese medicinal plants used in the treatment of diabetes mellitus, Clin. Phytosci., 6 (1), 34.

[19] Poovitha, S., and Parani, M., 2016, In vitro and in vivo α-amylase and α-glucosidase inhibiting activities of the protein extracts from two varieties of bitter gourd (Momordica charantia L.), BMC Complementary Altern. Med., 16 (1), 185.

[20] Wang, W., Xu, H., Chen, H., Tai, K., Liu, F., and Gao, Y., 2016, In vitro antioxidant, anti-diabetic and antilipemic potentials of quercetagetin extracted from marigold (T. erecta L.) inflorescence residues, J. Food Sci. Technol., 53 (6), 2614–2624.

[21] Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., and Olson, A.J., 2009, Software news and updates AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility, J. Comput. Chem., 30 (16), 2785–2791.

[22] Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., and Ferrin, T.E., 2004, UCSF Chimera—A visualization system for exploratory research and analysis, J. Comput. Chem., 25 (13), 1605–1612.

[23] BIOVIA, Dassault Systèmes, 2019, Discovery Studio Visualizer v.20.1.0.19295, Dassault Systèmes, San Diego, US.

[24] Akbar, A., Soekamto, N.H., Firdaus, F., and Bahrun, B., 2021, Antioxidant of n-hexane, ethyl acetate, and methanol extracts of Padina sp with DPPH method, IOP Conf. Ser.: Earth Environ. Sci., 800 (1), 012019.

[25] Harborne, J.B., 1998, Phytochemical Method a Guide to Modern Techniques of Plant Analysis, Springer Dordrecht, Netherlands.

[26] Kumala, S., and Sapitri, D.W., 2011, Phytochemical screening and toxicological evaluation using brine shrimp lethality test (BSLT) of some fractions of prasman leaves (Eupatorium triplinerve V) extract, Indones. J. Cancer Chemoprev., 2 (1), 194–197.

[27] Meyer, B.N., Ferrigni, N.R., Putnam, J.E., Jacobsen, L.B., Nichols, D.E.J., and McLaughlin, J.L., 1982, Brine shrimp: A convenient general bioassay for active plant constituents, Planta Med., 45 (5), 31–34.

[28] Ridwanto, R., Saragih, D.S., Rani, Z., Pulungan, A.F., Syahputra, R.A., Kaban, V.E., and Nasri, N., 2023, Toxicity test of vaname shrimp (Litopenaeus vannamei) skin chitosan using brine shrimp lethality test (BSLT) method, Rasayan J. Chem., 16 (4), 2249–2255.

[29] Wickramaratne, M.N., Punchihewa, J.C., and Wickramaratne, D.B.M., 2016, In-vitro alpha amylase inhibitory activity of the leaf extracts of Adenanthera pavonina, BMC Complementary Altern. Med., 16 (1), 466.

[30] Akshatha, J.V., SantoshKumar, H.S., Prakash, H.S., and Nalini, M.S., 2021, In silico docking studies of α-amylase inhibitors from the anti-diabetic plant Leucas ciliata Benth and an endophyte, Streptomyces longisporoflavus, 3 Biotech, 11 (2), 51.

[31] Truong, D.H., Nguyen, D.H., Ta, N.T.A., Bui, A.V., Do, T.H., and Nguyen, H.C., 2019, Evaluation of the use of different solvents for phytochemical constituents, antioxidants, and in vitro anti-inflammatory activities of Severinia buxifolia, J. Food Qual., 2019 (1), 8178294.

[32] Gonfa, T., Teketle, S., and Kiros, T., 2020, Effect of extraction solvent on qualitative and quantitative analysis of major phyto-constituents and in-vitro antioxidant activity evaluation of Cadaba rotundifolia Forssk leaf extracts, Cogent Food Agric., 6 (1), 1853867.

[33] Nawaz, H., Shad, M.A., Rehman, N., Andaleeb, H., and Ullah, N., 2020, Effect of solvent polarity on extraction yield and antioxidant properties of phytochemicals from bean (Phaseolus vulgaris) seeds, Braz. J. Pharm. Sci., 56, e17129.

[34] Lee, J.E., Jayakody, J.T.M., Kim, J.I., Jeong, J.W., Choi, K.M., Kim, T.S., Seo, C., Azimi, I., Hyun, J.M., and Ryu, B.M., 2024, The influence of solvent choice on the extraction of bioactive compounds from Asteraceae: a comparative review, Foods, 13 (19), 3151.

[35] Siddiqa, A., Khaliq, A., Mehmood, T., Chughtai, M. F.J., Sanchez-Migallon, A.M., Ahsan, S., Sabir, A., and Mohamed Ahmed, I.A., 2025, Phytochemical profiling of Tagetes erecta L. flowers at various blooming stages through optimized extraction of bioactive compounds for the development of functional juice, Front. Sustainable Food Syst., 9, 1474848.

[36] Dubale, S., Kebebe, D., Zeynudin, A., Abdissa, N., and Suleman, S., 2023, Phytochemical screening and antimicrobial activity evaluation of selected medicinal plants in Ethiopia, J. Exp. Pharmacol., 15, 51–62.

[37] Rajvanshi, S.K., and Dwivedi, D.H., 2017, Phytochemical screening studies of bioactive compounds of African marigold (T. erecta L.), J. Pharmacogn. Phytochem., 6 (4), 524–527.

[38] Elsyana, V., Bintang, M., and Priosoeryanto, B.P., 2016, Cytotoxicity and antiproliferative activity assay of clove mistletoe (Dendrophthoe pentandra (L.) Miq.) leaves extracts, Adv. Pharmacol. Pharm. Sci., 2016 (1), 3242698.

[39] Nguta, J.M., and Mbaria, J.M., 2013, Brine shrimp toxicity and antimalarial activity of some plants traditionally used in treatment of malaria in Msambweni district of Kenya, J. Ethnopharmacol., 148 (3), 988–992.

[40] Chaniad, P., Techarang, T., Phuwajaroanpong, A., Na-ek, P., Viriyavejakul, P., and Punsawad, C., 2021, In Vivo Antimalarial Activity and Toxicity Study of Extracts of Tagetes erecta L. and Synedrella nodiflora (L.) Gaertn. from the Asteraceae Family, Evidence-Based Complementary Altern. Med., 2021 (1), 1270902.

[41] Tran, N., Pham, B., and Le, L., 2020, Bioactive compounds in anti-diabetic plants: From herbal medicine to modern drug discovery, Biology, 9 (9), 252.

[42] Mohamed, G.A., Omar, A.M., El-Araby, M.E., Mass, S., and Ibrahim, S.R., 2023, Assessments of alpha-amylase inhibitory potential of tagetes flavonoids through in vitro, molecular docking, and molecular dynamics simulation studies, Int. J. Mol. Sci., 24 (12), 10195.

[43] Irawan, C., Enriyani, R., Ismail, I., Sukiman, M., Putri, I.D., Utami, A., Rahmatia, L., and Lisandi, A., 2024, Effects of solvent variation on the antioxidant, anti-inflammatory, and alpha-glucosidase inhibitory activity of Andrographis paniculata (Burm.f.) Wall leaves extract, Trop. J. Nat. Prod. Res., 8 (1), 5968–5972.

[44] Parklak, W., Ounjaijean, S., Kulprachakarn, K., and Boonyapranai, K., 2023, In vitro α-amylase and α-glucosidase inhibitory effects, antioxidant activities, and lutein content of nine different cultivars of marigold flowers (Tagetes spp.), Molecules, 28 (8), 3314.

[45] Barhoi, D., Upadhaya, P., Barbhuiya, S.N., Giri, A., and Giri, S., 2022, Extracts of T. erecta exhibit potential cytotoxic and antitumor activity that could be employed as a promising therapeutic agent against cancer: A study involving in vitro and in vivo approach, Phytomed. Plus, 2 (1), 100187.

[46] Kumar, S.R., Chozhan, K., Murugesh, K.A., Rajeswari, R., and Kumaran, K., 2021, Gas chromatography-mass spectrometry analysis of bioactive compounds in chloroform extract of Psoralea corylifolia L, J. Appl. Nat. Sci., 13 (4), 1225–1230.

[47] Tian, C., Gao, X., Yang, J., Guo, Y., Wang, H., and Liu, M., 2018, Chemical compositions, extraction technology, and antioxidant activity of petroleum ether extract from Abutilon theophrasti Medic. leaves, Int. J. Food Prop., 21 (1), 1789–1799.

[48] Mazumder, K., Nabila, A., Aktar, A., and Farahnaky, A., 2020, Bioactive variability and in vitro and in vivo antioxidant activity of unprocessed and processed flour of nine cultivars of Australian lupin species: A comprehensive substantiation, Antioxidants, 9(4), 282.

[49] González, A.S.C., Valencia, M.G., Cervantes-Villagrana, R.D., Zapata, A.B., and Cervantes-Villagrana, A.R., 2023, Cytotoxic and antitumor effects of the hydroalcoholic extract of T. erecta in lung cancer cells, Molecules, 28 (20), 7055.

[50] Nisa, S., Bibi, Y., Masood, S., Ali, A., Alam, S., Sabir, M., Qayyum, A., Ahmed, W., Alharthi, S., Santali, E.Y., Alharthy, S.A., Bawazir, W.M., and Almashjary, M.N., 2022, Isolation, characterization and anticancer activity of two bioactive compounds from Arisaema flavum (Forssk.) Schott, Molecules, 27 (22), 7932.

[51] Kolar, M.J., Konduri, S., Chang, T., Wang, H., McNerlin, C., Ohlsson, L., Härröd, M., Siegel, D., and Saghatelian, A., 2019, Linoleic acid esters of hydroxy linoleic acids are antiinflammatory lipids found in plants and mammals, J. Biol. Chem., 294 (27), 10698–10707.

[52] Gohlke, H., Hendlich, M., and Klebe, G., 2000, Knowledge-based scoring function to predict protein-ligand interaction, J. Mol. Biol., 295 (2), 337–356.

[53] Rao, S.N., Head, M.S., Kulkarni, A., and LaLonde, J.M., 2007, Validation studies of the site-directed docking program LibDock, J. Chem. Inf. Model., 47 (6), 2159–2171.

[54] Sahithi Somavarapu Thomas, A., Lakshmi Murugan Kavitha, V., Sekar, J., Velmurugan, M., Sriariyanun, M., and Shanmugam, V., 2023, Antidiabetic activity and molecular docking analysis of milky mushroom (Calocybe indica) grown on the renewable substrate, E3S Web Conf., 428, 1–7.

[55] Yunitasari, N., Raharjo, T.J., Swasono, R.T., and Pranowo, H.D., 2022, Identification α-amylase inhibitors of Vernonia amygdalina leaves extract using metabolite profiling combined with molecular docking, Indones. J. Chem., 22 (2), 526–538.

[56] Chen, D., Oezguen, N., Urvil, P., Ferguson, C., Dann, S.M., and Savidge, T.C., 2016, Regulation of protein-ligand binding affinity by hydrogen bond pairing, Sci. Adv., 2 (3), e1501240.



DOI: https://doi.org/10.22146/ijc.104489

Article Metrics

Abstract views : 1688 | views : 612


Copyright (c) 2025 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.