Cold Plasma-Induced Surface Modification of Microfibrillated Cellulose Using Lauric Acid to Enhance Compatibility in Polymer Composites

https://doi.org/10.22146/ijc.104738

Annisa Rifathin(1), Ade Mundari Wijaya(2), Achmad Nandang Roziafanto(3), Joddy Arya Laksmono(4), Adam Febriyanto Nugraha(5), Mochamad Chalid(6*)

(1) Green Polymer Technology Laboratory, Department of Metallurgical and Material Engineering, Faculty of Engineering, Universitas Indonesia, Depok 16424, Indonesia; Research Center for Polymer Technology, National Research and Innovation Agency (BRIN), Jl. Raya Puspiptek 60, Setu, Tangerang Selatan 15314, Indonesia
(2) Research Center for Polymer Technology, National Research and Innovation Agency (BRIN), Jl. Raya Puspiptek 60, Setu, Tangerang Selatan 15314, Indonesia
(3) Department of Food Nanotechnology, Politeknik AKA Bogor, Jl. Pangeran Sogiri No. 283, Bogor 16154, Indonesia
(4) Research Center for Polymer Technology, National Research and Innovation Agency (BRIN), Jl. Raya Puspiptek 60, Setu, Tangerang Selatan 15314, Indonesia
(5) Green Polymer Technology Laboratory, Department of Metallurgical and Material Engineering, Faculty of Engineering, Universitas Indonesia, Depok 16424, Indonesia; Center for Sustainability and Waste Management, Universitas Indonesia, Depok 16424, Indonesia
(6) Green Polymer Technology Laboratory, Department of Metallurgical and Material Engineering, Faculty of Engineering, Universitas Indonesia, Depok 16424, Indonesia; Center for Sustainability and Waste Management, Universitas Indonesia, Depok 16424, Indonesia
(*) Corresponding Author

Abstract


Green materials, such as microfibrillated cellulose (MFC), are increasingly used as fillers in polymer composites for academic and industrial applications. However, their inherent hydrophilic property limits compatibility with polymer matrix. This study employs an environmentally friendly cold plasma technique to modify the surface of MFC, improving its compatibility with the polymer. Plasma treatment was performed at a voltage of 60 V for 30 min by making three molar ratios (3:1, 4:1, and 5:1) between lauric acid as a hydrophobic precursor and anhydroglucose (AGU). The results indicate several changes in the modified MFC properties, as evidenced by the appearance of a new peak at a wavenumber of 1742 cm1 (ester’s C=O) in FTIR spectra, indicating successful plasma-induced grafting. XPS results also confirm the formation of O–C=O bond at a binding energy of 289.3 eV. The optimum conditions were obtained at a molar ratio of 4:1 (lauric acid:AGU). There was a decrease in the hydrophilic property of MFC, indicated by an increase in the water contact angle from 50.16° to 71.26°. Moreover, the surface tension difference between MFC and polypropylene was significantly reduced from 136.99 to 47.51%, suggesting improved compatibility.


Keywords


microfibrillated cellulose; surface modification; cold plasma; compatibility

Full Text:

Full Text PDF


References

[1] Chandgude, S., and Salunkhe, S., 2021, In state of art: Mechanical behavior of natural fiber-based hybrid polymeric composites for application of automobile components, Polym. Compos., 42 (6), 2678–2703.

[2] Stanaszek-Tomal, E., 2019, Wood - Polymer composites as an alternative to the natural environment, IOP Conf. Ser.: Mater. Sci. Eng., 603 (2), 022009.

[3] Venkatarajan, S., and Athijayamani, A., 2021, An overview on natural cellulose fiber reinforced polymer composites, Mater. Today: Proc., 37, 3620–3624.

[4] Panaitescu, D.M., Frone, A.N., Radovici, C., Ghiurea, M., Iorga, M.D., Spataru, C.I., and Attaf, B., 2011, “Properties of Polymer Composites with Cellulose Microfibrils” in Advances in Composite Materials - Ecodesign and Analysis, IntechOpen, Rijeka, Croatia.

[5] Miao, C., and Hamad, W.Y., 2013, Cellulose reinforced polymer composites and nanocomposites: A critical review, Cellulose, 20 (5), 2221–2262.

[6] Pico, D., and Steinmann, W., 2016, “Synthetic Fibres for Composite Applications” in Fibrous and Textile Materials for Composite Applications, Eds. Rana, S., and Fangueiro, R., Springer Singapore, Singapore, 135–170.

[7] Bindu Sharmila, T.K., Julie Chandra, C.S., Sasi, S., and Arundhathi, C.K., 2024, “Modification of Cellulose” in Handbook of Biomass, Eds. Thomas, S., Hosur, M., Pasquini, D., and Jose Chirayil, C., Springer Nature Singapore, Singapore, 535–571.

[8] Lu, N., Oza, S., and Tajabadi, M.G., 2015, “Surface Modification of Natural Fibers for Reinforcement in Polymeric Composites” in Surface Modification of Biopolymers, Wiley, Hoboken, NJ, US, 224–237.

[9] Gadhave, R.V., Dhawale, P.V., and Sorate, C.S., 2021, Surface modification of cellulose with silanes for adhesive application: Review, Open J. Polym. Chem., 11 (2), 11–30.

[10] Aziz, T., Haq, F., Farid, A., Kiran, M., Faisal, S., Ullah, A., Ullah, N., Bokhari, A., Mubashir, M., Chuah, L.F., and Show, P.L., 2023, Challenges associated with cellulose composite material: Facet engineering and prospective, Environ. Res., 223, 115429.

[11] Kim, J.K., Bandi, R., Dadigala, R., Hai, L.V., Han, S.Y., Kwon, G.J., Cho, S.W., Ma, S.Y., and Lee, S.H., 2023, Esterification of nanofibrillated cellulose using lauroyl chloride and its composite films with polybutylene succinate, BioResources, 18 (4), 7143–7153.

[12] Pasquini, D., Teixeira, E.M., Curvelo, A.A.S., Belgacem, M.N., and Dufresne, A., 2008, Surface esterification of cellulose fibres: Processing and characterisation of low-density polyethylene/cellulose fibres composites, Compos. Sci. Technol., 68 (1), 193–201.

[13] Wen, X., Wang, H., Wei, Y., Wang, X., and Liu, C., 2017, Preparation and characterization of cellulose laurate ester by catalyzed transesterification, Carbohydr. Polym., 168, 247–254.

[14] Yu, S., Zhao, C., Wei, J., Jia, S., Chen, P., Shao, Z., and Lyu, S., 2022, Preparation of BTCA-esterified cellulose nanocrystals and effects on mechanical and thermal properties of polypropylene composites, J. Appl. Polym. Sci., 139 (42), e53031.

[15] Men, S., Jiang, X., Xiang, X., Sun, G., Yan, Y., Lyu, Z., and Jin, Y., 2018, Synthesis of cellulose long-chain esters in 1-butyl-3-methylimidazolium acetate: Structure-property relations, Polym. Sci., Ser. B, 60 (3), 349–353.

[16] Panda, P.K., Jassal, M., and Agrawal, A.K., 2015, Influence of precursor functionality on in situ reaction dynamics in atmospheric pressure plasma, Plasma Chem. Plasma Process., 35 (4), 677–695.

[17] Khelifa, F., Ershov, S., Habibi, Y., Snyders, R., and Dubois, P., 2016, Free-radical-induced grafting from plasma polymer surfaces, Chem. Rev., 116 (6), 3975–4005.

[18] Bertin, M., Leitao, E.M., Bickerton, S., and Verbeek, C.J.R., 2024, A review of polymer surface modification by cold plasmas toward bulk functionalization, Plasma Processes Polym., 21 (5), 2300208.

[19] Chalid, M., Putranto, B.D., Alfiando, M.A.Y., Desfrandanta, J., and Agita, A., 2018, Study on grafting of starch on natural rubber latex via GDEP method, AIP Conf. Proc., 2024 (1), 020066.

[20] Chalid, M., Husnil, Y.A., Puspitasari, S., and Cifriadi, A., 2020, Experimental and modelling study of the effect of adding starch-modified natural rubber hybrid to the vulcanization of sorghum fibers-filled natural rubber, Polymers, 12 (12), 3017.

[21] Popescu, M.C., Totolin, M., Tibirna, C.M., Sdrobis, A., Stevanovic, T., and Vasile, C., 2011, Grafting of softwood kraft pulps fibers with fatty acids under cold plasma conditions, Int. J. Biol. Macromol., 48 (2), 326–335.

[22] Cabrales, L., and Abidi, N., 2012, Microwave plasma induced grafting of oleic acid on cotton fabric surfaces, Appl. Surf. Sci., 258 (10), 4636–4641.

[23] Latthe, S., Terashima, C., Nakata, K., and Fujishima, A., 2014, Superhydrophobic surfaces developed by mimicking hierarchical surface morphology of lotus leaf, Molecules, 19 (4), 4256–4283.

[24] Annamalai, M., Gopinadhan, K., Han, S.A., Saha, S., Park, H.J., Cho, E.B., Kumar, B., Patra, A., Kim, S.W., and Venkatesan, T., 2016, Surface energy and wettability of van der Waals structures, Nanoscale, 8 (10), 5764–5770.

[25] Rudawska, A., and Jacniacka, E., 2009, Analysis for determining surface free energy uncertainty by the Owen–Wendt method, Int. J. Adhes. Adhes., 29 (4), 451–457.

[26] Abusrafa, A.E., Habib, S., Krupa, I., Ouederni, M., and Popelka, A., 2019, Modification of polyethylene by RF plasma in different/mixture gases, Coatings, 9 (2), 145.

[27] Otenda, B.V., Kareru, P.G., Madivoli, E.S., Salim, A.M., Gichuki, J., and Wanakai, S.I., 2022, Starch-hibiscus-cellulose nanofibrils composite films as a model antimicrobial food packaging material, J. Nat. Fibers, 19 (15), 12371–12384.

[28] Kittikorn, T., Chaiwong, W., Stromberg, E., Torro, R.M., Ek, M., and Karlsson, S., 2020, Enhancement of interfacial adhesion and engineering properties of polyvinyl alcohol/polylactic acid laminate films filled with modified microfibrillated cellulose, J. Plast. Film Sheeting, 36 (4), 368–390.

[29] Lease, J., Kawano, T., and Andou, Y., 2021, Esterification of cellulose with long fatty acid chain through mechanochemical method, Polymers, 13 (24), 4397.

[30] Cao, Y., Hua, H., Yang, P., Chen, M., Chen, W., Wang, S., and Zhou, X., 2020, Investigation into the reaction mechanism underlying the atmospheric low-temperature plasma-induced oxidation of cellulose, Carbohydr. Polym., 233, 115632.

[31] Demirkir, C., Aydin, I., Colak, S., and Ozturk, H., 2017, Effects of plasma surface treatment on bending strength and modulus of elasticity of beech and poplar plywood, Maderas: Cienc. Tecnol., 19 (2), 195–202.

[32] Pavliňák, D., Švachová, V., Vojtek, L., Zarzycká, J., Hyršl, P., Alberti, M., and Vojtová, L., 2015, Plasma-chemical modifications of cellulose for biomedical applications, Open Chem., 13 (1), 229–235.

[33] Ahmadi, M., Nasri, Z., von Woedtke, T., and Wende, K., 2022, D-glucose oxidation by cold atmospheric plasma-induced reactive species, ACS Omega, 7 (36), 31983–31998.

[34] Lan, X., Ma, Z., Szojka, A.R.A., Kunze, M., Mulet-Sierra, A., Vyhlidal, M.J., Boluk, Y., and Adesida, A.B., 2021, TEMPO-oxidized cellulose nanofiber-alginate hydrogel as a bioink for human meniscus tissue engineering, Front. Bioeng. Biotechnol., 9, 766399.

[35] Zhang, H., Sang, L., Wang, Z., Liu, Z., Yang, L., and Chen, Q., 2018, Recent progress on non-thermal plasma technology for high barrier layer fabrication, Plasma Sci. Technol, 20 (6), 063001.

[36] Onwukamike, K.N., Grelier, S., Grau, E., Cramail, H., and Meier, M.A.R., 2018, Sustainable transesterification of cellulose with high oleic sunflower oil in a DBU-CO2 switchable solvent, ACS Sustainable Chem. Eng., 6 (7), 8826–8835.

[37] Ly, B., Thielemans, W., Dufresne, A., Chaussy, D., and Belgacem, M.N., 2008, Surface functionalization of cellulose fibres and their incorporation in renewable polymeric matrices, Compos. Sci. Technol., 68 (15-16), 3193–3201.

[38] Yuanita, E., Nugraha, A.F., Jumahat, A., Mochtar, M.A., and Chalid, M., 2024, Extraction of cellulose from Arenga pinnata “ijuk” fiber for polypropylene composite: effect of multistage chemical treatment on the crystallinity and thermal behaviour of composite, S. Afr. J. Chem. Eng., 48, 112–120.

[39] Matuana, L.M., Balatinecz, J.J., Sodhi, R.N.S., and Park, C.B., 2001, Surface characterization of esterified cellulosic fibers by XPS and FTIR spectroscopy, Wood Sci. Technol., 35 (3), 191–201.

[40] Jandura, P., Riedl, B., and Kokta, B.V., 2000, Thermal degradation behavior of cellulose fibers partially esterified with some long chain organic acids, Polym. Degrad. Stab., 70 (3), 387–394.



DOI: https://doi.org/10.22146/ijc.104738

Article Metrics

Abstract views : 5231 | views : 2084


Copyright (c) 2025 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.