HYDROLYSIS OF CARBOHYDRATES IN CASSAVA PULP AND TAPIOCA FLOUR UNDER MICROWAVE IRRADIATION

https://doi.org/10.22146/ijc.21387

Euis Hermiati(1*), Jun-ichi Azuma(2), Djumali Mangunwidjaja(3), Titi C. Sunarti(4), Ono Suparno(5), Bambang Prasetya(6)

(1) R&D Unit for Biomaterials, Indonesian Institute of Sciences (LIPI), Jl. Raya Bogor Km 46, Cibinong, Bogor 16911
(2) Laboratory of Forest Biochemistry (Laboratory of Recycling System of Biomass), Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502
(3) Department of Agroindustrial Technology, Faculty of Agricultural Engineering and Technology, Bogor Agricultural University, Kampus IPB Darmaga, PO Box 220, Bogor 16002
(4) Department of Agroindustrial Technology, Faculty of Agricultural Engineering and Technology, Bogor Agricultural University, Kampus IPB Darmaga, PO Box 220, Bogor 16002
(5) Department of Agroindustrial Technology, Faculty of Agricultural Engineering and Technology, Bogor Agricultural University, Kampus IPB Darmaga, PO Box 220, Bogor 16002
(6) Deputy of Life Sciences, Indonesian Institute of Sciences (LIPI), Sasana Widya Sarwono 3rd Floor, Jl. Gatot Subroto 10, Jakarta 12190
(*) Corresponding Author

Abstract


Cassava pulp and tapioca flour are potential sources of glucose. In this work, validity of microwave irradiation for hydrolysis of carbohydrates, especially starch, present in cassava pulp and tapioca flour was estimated as a non-enzymatic saccharification technique. Suspension of cassava pulp or tapioca flour in distilled water (1g/20 mL) was subjected to microwave irradiation at temperatures of 140-240 °C with pre-heating time of 4 min and heating time of 5 min. Solubilization rate of cassava pulp increased with increasing temperature of microwave heating treatment and reached maximum (92.54%) at 220 °C, while that of tapioca flour reached almost 100% at 140 °C. Production of malto-oligomers from starch in cassava pulp and tapioca flour was clearly observed at 220 °C. The highest glucose yields from cassava pulp and tapioca flour in this experiment were 28.59 and 58.76% dry matter, respectively. Variation of pre-heating time at 230 °C did not give significant effects on glucose yield from cassava pulp. However, glucose yield from tapioca flour decreased due to increase of pre-heating time. Microwave irradiation is a promising method of hydrolysis for cassava pulp and tapioca flour due to the fast process.

Keywords


cassava pulp; microwave; hydrolysis; carbohydrate; glucose

Full Text:

Full Text PDF


References

[1] Pandey, A., Soccol, C.R., Nigam, P., Soccol, V.T., Vandenberghe, L.P.S., and Mohan, R., 2000, Bioresour. Technol., 74, 81–87.

[2] Sriroth, K., Chollakup, R., Chotineeranat, S., Piyachomkwan, K., and Oates, C.G., 2000, Bioresour. Technol., 71, 63–69.

[3] Jaleel, S.A., Srikanta, S., Ghildyal, N.P., and Lonsane, B.K., 1988, Starch – Stärke, 40, 2, 55–58.

[4] Woiciechowski, A.L., Nitsche, S., Pandey, A., and Soccol, C.R., 2002, Braz. Arch. Biol. Technol., 45, 393–400.

[5] Chotineeranat, S., Pradistsuwana, C., Siritheerasas, P., and Tantratian, S., 2004, J. Sci. Res. Chulalongkorn, 29, 2, 119–128.

[6] Kongkiattikajorn, J., and Yoonan, K., 2004, Kasetsart J. (Nat. Sci.), 38, 29–35.

[7] Srinorakutara, T., Suesat, C., Pitiyont, B., Kitpreechavanit, W., and Cattithammanit, S., 2004, Utilization of waste from cassava starch plant for ethanol production, The Joint International Conference on “Sustainable Energy and Environment (SEE)”, Hua Hin, Thailand, 344–349.

[8] Srinorakutara, T., Kaewvimol, L., and Saengow, L., 2006, Approach of cassava waste pretreatments for fuel ethanol production in Thailand., http://www.energy-based.nrct.go.th/Article/Ts-3%20approach%20of%20cassava%20waste%20pretreatments%20for%20fuel%20ethanol%20production%20in%20thailand.pdf, accessed 21 August 2009.

[9] Rattanachomsri, U., Tanapongpipat, S., Eurwilaichitr, L., and Champreda, V., 2009, J. Biosci. Bioeng. 107, 5, 488493.

[10] Ahmed, S.Y., Ghildyal, N.P., Kunhi, A.A.M., and Lonsane, B.K., 1982, Starch – Stärke, 35, 12, 430–432.

[11] Srikanta, S., Jaleel, S.A., Ghildyal, N.P., Lonsane, B.K., and Karanth, N.G., 1987, Starch – Stärke, 39, 7, 234-237.

[12] Yoonan, K., Kongkiattikajorn, J., and Rattanakanokchai, K., 2004, Ethanol production from acid hydrolysates of cassava pulps using fermentation by Saccharomyces cerevisiae, http://www.lib.ku.ac.th/KUCONF/KC4305049.pdf, accessed 21 August 2009.

[13] Yamaji, K., Matsumura, Y., Ishitani, H., Yamada, K., Wyman, C.E., and Tolan, J.S., 2006, Production of low-cost bioethanol to be a rival to fossil fuel, http://www.nedo.go.jp/itd/teian/ann-mtg/fy18/project_grant/pdf/h/h-03y_e.pdf, accessed 16 May 2008.

[14] Yamaji, K., Yamamoto, H., and Nagatomi, Y., 2007, Evaluation of ethanol production from cassava pulp in Thailand with a biomass collection and utilization model. Paper presented at COE Symposium on Advanced Electronics for Future Generations, The 21st Century COE in Electrical Engineering and Electronics for Active and Creative World, The University of Tokyo, Tokyo 15 January 2007.

[15] Kosugi, A., Kondo, A., Ueda, M., Murata, Y., Vaithanomsat, P., Thanapase, W., Arai, T., and Mori, Y, 2009, Renewable Energy, 34, 5, 1354–1358.

[16] Yu, H.M., Chen, S.T., Suree, P., Nuansri, R., and Wang, K.T., 1996, J. Org. Chem., 26, 9608–9609.

[17] Kunlan, L., Lixin, X., Jun, L., Jun, P., Guaying, C., and Zuwei, X., 2001, Carbohydr. Res., 331, 1, 9–12.

[18] Palav, T., and Seetharaman, K., 2006, Carbohydr. Polym., 65, 3, 364–370.

[19] Khan, A.R., Johnson, J.A., and Robinson, R.J., 1979, Cereal Chem., 56, 4, 303–304.

[20] Palav, T., and Seetharaman, K., 2007, Carbohydr. Polym., 67, 4, 596–604.

[21] Nikolic, S., Mojovic, L., Rakin, M., Pejin, D., and Savic, D., 2008, Chem. Ind. Chem. Eng. Q., 14, 4, 231–234.

[22] Matsumoto, A., Tsubaki, S., Sakamoto, M., and Azuma, J., 2008, Oligosaccharides adsorbed on activated charcoal powder escaped from hydrolysis by microwave heating in water. Proceedings of Global Congress on Microwave Energy Applications. August 4-8 2008, Otsu, Japan, 785–788.

[23] Matsumoto, A., Tsubaki, S., Sakamoto, M., and Azuma, J., 2011, Bioresour. Technol., 102, 4, 3985–3992.

[24] Pinkrova, J., Hubackova, B., Kadlec, P., Prihoda, J., and Bubnik, Z., 2003, Czech J. Food Sci. 21, 5, 176–184.

[25] Warrand, J., and Janssen, H.G., 2007, Carbohydr. Polym., 69, 2, 353–362.

[26] Whistler, R.L., and Daniel, J.R., 1985, “Carbohydrates” in Food Chemistry. Ed. Fennema, O.R., Marcel Dekker, New York, 69–137.

[27] Wrolstad, R.E., Acree, T.E., Decker, E.A., Penner, M.H., Reid, D.S., Schwartz, S.J., Shoemaker, C.F., Smith, D., and Sporns, P., 2005, Handbook of Food Analytical Chemistry: Water, Proteins, Enzymes, Lipids, and Carbohydrates. John Wiley & Sons, Hoboken, New Jersey.

[28] Kunhi, A.A.M., Ghildyal, N.P., Lonsane, B.K., Ahmed, S.Y., and Natrajan, C.P., 1981, Starch – Stärke, 33, 8, 275–279.

[29] Siregar, M., 2006, Effects of small-scale tapioca processing unit development on employment and income generation in Lampung, Indonesia, http://pse.litbang.deptan.go.id/indpdffiles/Mono27-6.pdf, accessed 4 May 2010.

[30] Kumoro, A.C., Retnowati, D.S., and Budiyati, C.S., 2010, Am. J. Food Technol., 5, 100–110.

[31] Zobel, H.F., 1988, Starch – Stärke, 40, 1, 1–7.

[32] Atichokudomchai, N., Shobsngob, S., Chinachoti, P., and Varavinit, S., 2000, Starch – Stärke, 52, 8-8, 283–289.

[33] Wickramasinghe, H.A.M., Takigwa, S., Matsuura-Endo, C., Yamauchi, H., and Noda, T., 2009, Food Chem., 112, 1, 98–103.

[34] Mbougueng, P.D., Tenin, D., Scher, D., and Tchiegang, C., J. Food Technol., 6, 3, 139–146.

[35] Atichokudomchai, N., Shobsngob, S., Chinachoti, P., and Varavinit, S., 2001, Starch – Stärke, 53, 11, 577-581.

[36] Sair, L, 1967, Cereal Chem., 44, 8–26.



DOI: https://doi.org/10.22146/ijc.21387

Article Metrics

Abstract views : 7795 | views : 6215


Copyright (c) 2011 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.