PRELIMINARY STUDY OF THE UTILIZATION OF THE FLY ASH FROM COAL-FIRED POWER PLANT FOR IMMOBILIZATION OF RADIOACTIVE WASTE

https://doi.org/10.22146/ijc.21390

Herry Poernomo(1*)

(1) Centre for the Accelerator and Material Process Technology, National Nuclear Energy Agency, Jl. Babarsari P.O. Box 6101 Ykbb Yogyakarta 55281
(*) Corresponding Author

Abstract


Preliminary study of the utilization of the fly ash from coal-fired power plant for immobilizing simulated radioactive waste has been done. The objective of this research was to study characteristics of pozzolanic material of the fly ash from coal-fired power plant as substitute of compactor material for immobilizing simulated radioactive waste. The experiment was carried out by mixing of the compactor materials such as (cement + lime), (cement + fly ash), (cement + fly ash + lime), (fly ash + lime) with Na2SO4 225 g/L and KCl 4.6 g/L as simulation of evaporator concentrate according to reference waste form no. 1 on characterization of low and medium-level radioactive waste forms in the EUR 9423-EN. Each mixture of compactor materials solidified for 14 days, 21 days, and 28 days. Solidified result was monolith, and then its compressive strength, water absorption, and porosity were tested. The experiment result showed that the best of the compactor materials on the immobilizing simulated radioactive waste was cement of 30% (wt), fly ash of 20% (wt), and lime of 20% (wt) with compressive strength of monolith of 1512.7 N/cm2. The condenser substance on the weight ratio of fly ash/lime of 20/50 - 60/10 % (wt) as pozzolanic substance could be used for immobilizing simulated radioactive waste by compressive strength of monoliths of 345 - 610.4 N/cm2. Minimum compressive strength of monolith from radioactive waste cementation according to IAEA is 320 N/cm2, hence compressive strength of monoliths from this experiment can be expressed enough well.

Keywords


fly ash; coal-fired power plant; immobilization; radioactive waste

Full Text:

Full Text PDF


References

[1] Rusdiarso, B., 1996, Analisis dan Kajian tentang Pemanfaatan Abu Layang sebagai Adsorben Zat Warna, Laporan Penelitian, FMIPA–UGM, Yogyakarta.

[2] ADAA, Fly Ash Reference Material, Ash Development Association of Australia, http://www.adaa.asn.au/refmaterial.htm, May 4, 2007.

[3] Nelson, E.B., 1990, Cement Additive and Mechanisms of Action, In: Well Cementing, Schlumberger Educational Services, 5000 Gullf Freeway Houston, Texas, 3–12.

[4] Kawigraha, A., 1997, Pemanfaatan Sifat Pozolan Abu Batubara untuk Bahan Baku Semen, Prosiding Konperensi Energi, Sumberdaya Alam dan Lingkungan, BBPT, Jakarta, 278–283.

[5] Husin, A.,1998, Jurnal Litbang, Vol. 14, No. 1.

[6] Widiyati, C., and Poernomo, H., 2005, Indo. J. Chem., 5, 1, 36–40.

[7] Kaiser, S., 1999, Radiological Protection Principles Concerning the Natural Radioactivity of Building Materials, Radiation Protection 112, European Commission.

[8] Widodo, S., 2007, Trace Element dalam Fly Ash Industri Batubara, Workshop Aplikasi Energi Nuklir untuk Proses Batubara Cair, PTKMR–BATAN.

[9] IAEA, 1996, Clearance Levels for Radionuclides in Solid Materials, Application of Exemption Principles, IAEA-Tecdoc 855, ISSN 1011-4289, IAEA-Vienna, 11.

[10] NEA, 2004, Removal from Regulatory Control of Materials and Sites in Decommissioning and Site Remediation Situation in Spain, In: Removal of Regulatory Controls for Materials and Sites, Nuclear Energy Agency (NEA), Radioactive Waste Management Committee, NEA/RWM/RF(2004)6, 31.

[11] Kaiser, S., 2000, Practical Use of the Concepts of Clearance and Exemption - Part I, Guidance on General Clearance Levels for Practices, Radiation Protection 122, Directorate-General Environment, European Commission.

[12] Vejmelka, P., and Sambell, R.A.J., 1984, Characterization of Low and Medium-Level Radioactive Waste Forms, EUR 9423 EN, Commission of the European Communities, 165.

[13] Jupri, M.R., 2009, Pemanfaatan Abu Layang dari Pembangkit Listrik Tenaga Uap Tanjung Jati B Jepara untuk Imobilisasi Limbah Radioaktif Simulasi, Skripsi Sekolah Tinggi Teknik Lingkungan, Yogyakarta.

[14] PT. Semen Gresik, Standar Spesifikasi Semen Gresik Portland Cement Tipe I, http://semen.web44.net/v.2.0/layananpelanggan/komposisipengujian.php, October 6, 2009.

[15] Prakoso, J., 2006, Pengaruh Penambahan Abu Terbang terhadap Kuat Tekan dan Serapan Air pada Bata Beton Berlubang, Skripsi Teknik Sipil, Fakultas Teknik, Universitas Negeri Semarang.

[16] Soler, J.M., 2007, Thermodynamic Description of the Solubility of C-S-H Gels in Hydrated Portland Cement, Institut de Ciències de la Terra "Jaume Almera" (CSIC), Finland.

[17] Gani, M.S.J., 1997, Cement and Concrete, Chapman and Hill, London.

[18] IAEA, 2001, Handling and Processing of Radioactive Waste from Nuclear Applications, Vienna, 89–99.

[19] Kurtis, K., 2007, Structure of the Hydrated Cement Paste, School of Civil Engineering Georgia Institute of Technology Atlanta, Georgia.

[20] Murdock, L.J., Brook, K.M., and Hindarko, S., 1999, Bahan dan Praktek Beton, Erlangga, Jakarta.

[21] Mustain, 2006, Uji Kuat Tekan dan Serapan Air pada Bata Beton Bertulang dengan Bahan Ikat Kapur dan Abu Layang, Skripsi Teknik Sipil, Fakultas Teknik, Universitas Negeri Semarang.

[22] Le Neveu, D.M., 1986, Vault Submodel for the Second Interim Assessment of the Canadian Concept for Nuclear Fuel Waste Disposal: Post Closure Phase, Atomic Energy of Canada Limited (AECL), Pinawa, Manitoba.

[23] American Nuclear Society, 1984, Measurement of the Leachability of Solidified Low Level Radioactive Waste, ANS 16.1, American Nuclear Society, Champaign, Illinois.



DOI: https://doi.org/10.22146/ijc.21390

Article Metrics

Abstract views : 2844 | views : 1845


Copyright (c) 2011 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.