USE OF NANOSIZED CHROMIUM DOPED TiO2 SUPPORTED ON ZEOLITE FOR METHYLENE BLUE DEGRADATION

https://doi.org/10.22146/ijc.21475

Aarti Ameta(1*), Indu Bhati(2), Rakshit Ameta(3), Suresh C. Ameta(4)

(1) Photochemistry Laboratory, Department of Chemistry, M. L. Sukhadia University, Udaipur - 313001 (Raj.)
(2) Photochemistry Laboratory, Department of Chemistry, M. L. Sukhadia University, Udaipur - 313001 (Raj.)
(3) Department of Pure and Applied Chemistry, University of Kota, Kota - 342005 (Raj.)
(4) Photochemistry Laboratory, Department of Chemistry, M. L. Sukhadia University, Udaipur - 313001 (Raj.)
(*) Corresponding Author

Abstract


The photocatalytic degradation of methylene blue dye under visible light has been investigated using chromium modified titanium dioxide supported on zeolite (Cr-TiO2/zeolite). The photocatalyst was prepared by sol-gel method and characterized by X-ray diffraction and SEM. The rate of photodegradation of dye was monitored spectrophotometrically. The effect of pH, dye concentration, amount of photocatalyst and intensity of light on the rate of photocatalytic reaction was observed. The results showed that the use of Cr-doped TiO2 increased the rate of photocatalytic degradation of methylene blue as compared to untreated TiO2. The photocatalytic mechanism of Cr-TiO2 catalyst has been tentatively discussed.


Keywords


Methylene blue; zeolite; chromium; photocatalytic degradation

Full Text:

Full Text Pdf


References

[1] Oshea, K.E., Jannach, S.H., and Garcia, I., 1999, J. Photochem. Photobiol., A, 122, 2, 127-131.

[2] Wang, Y., Cheng, H., Zhang, L., Hao, Y., Ma, J., Xu, B., and Li, W., 2000, J. Mol. Catal. A: Chem., 151, 1-2, 205-216.

[3] Xu, Y., and Langford, C.H., 1997, J. Phys. Chem. B, 101, 3115-3121.

[4] Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., and Taga, Y., 2001, Science, 293, 5528, 269-271.

[5] Xie, Y., and Yuan, C., 2003, Appl. Catal., B, 46, 251.

[6] Liu, X., Lu, K., and Thomas, J.K., 1993, J. Chem. Soc., Faraday Trans., 89, 1816.

[7] Green, K. J., and Rudham, R., 1993, J. Chem. Soc., Faraday Trans., 89, 1867.

[8] Fox, M.A., Doan, K.E., and Dulay, M.T., 1994, Res. Chem. Intermed., 20, 711-722.

[9] Cehn, J., Eberlein. L., Cooper, C.H., and Langford, H., 2002, J. Photochem. Photobiol., A, 148, 183-189.

[10] Habibi, M.H., Hassanzadeh, A., and Madhvi, S., 2005, J. Photochem. Photobiol., A, 172, 1, 89-96.

[11] Vosooghian, H., and Habibi, M.H., 2007, Int. J. Photoenergy, ID 89759.

[12] Nahar, M.S., Hasegawa, K., Kagaya, S., and Kuroda, S., 2007, Sci. Technol. Adv. Mater., 8, 286-291.

[13] Subramanian, M., Vijayalakshmi, S., Venkataraj, S., and Jayavel, R., 2008, Thin Solid Films, 516, 12, 3776-3782.

[14] Yamazaki, S., and Nakamura, N., 2008, J. Photochem. Photobiol., A, 193, 65.

[15] Klosek, S., and Raftery, D., 2001, J. Phys. Chem. B., 105, 2815-2819.

[16] Davydov, L., Reddy, E.P., France, P., and Smirniotis, P.G., 2001, J. Catal., 203, 157-167.

[17] Su, C., Hong, B.Y., and Tseng, C.M., 2004, Catal. Today, 96, 3, 119-126.

[18] Tanaka, K., Capule, M.F.V., and Hisanaga, T., 1991, Chem. Phys. Lett., 187, 73-76.

[19] Bakardjeva, S., Subrt, J., Stengl, V., Dianez, M.J., and Sayagues, M.J., 2005, Appl. Catal., B, 58, 193-202.

[20] Zhao, D.–S., Wang, J.L., Zhao, X.–H., and Zhang, J., 2009, Chem. Res. Chin. Univ., 25, 543.

[21] Lodha, S., Jain, A., Paliwal, M., and Punjabi, P.B., 2008, Indo. J. Chem., 8, 1, 42-46.

[22] Kothari, S., Kumar, A., Vyas, R., Ameta, R., and Punjabi, P.B., 2009, J. Braz. Chem. Soc., 20, 10, 1821-1826.



DOI: https://doi.org/10.22146/ijc.21475

Article Metrics

Abstract views : 2106 | views : 1385


Copyright (c) 2010 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.