MONTE CARLO SIMULATION OF I-, Br-, AND Cl- IN WATER USING AB INITIO PAIR POTENSIAL FUNCTIONS
Harno Dwi Pranowo(1*)
(1) Austrian-Indonesian Centre for Computational Chemistry (AIC), Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Bulaksumur Yogyakarta 55281, Indonesia
(*) Corresponding Author
Abstract
Monte Carlo simulations were performed for I-, Br- and Cl-, in water using ab initio pair potential. The systems consisting of one anion in 215 solvent molecules have been simulated at 298 K. Anion-water pair potentials have been newly developed based on ab initio calculations of split valence basis set plus polarization quality. The structure of the solvated ion is discussed in terms of radial distribution functions, coordination number and pair potential distribution. Structural properties were investigated by means of radial distribution functions and their running integration numbers, leading for the first solvation shell to an average 12.60 H2O around I- with I--O distance of 3.74 Å and I--H distance of 2.86 Å, 11.84 H2O around Br- with Br--O distance of 3.40 Å and Br--H distance of 2.42 Å, and 10.68 H2O around Cl- with Cl--O distance of 3.20 Å and Cl--H distance of 2.24 Å, respectively. The structure of the water-anion complexes are agreed with dipole orientation. Pair energy distribution of hydrated anions showed that the pair interaction energy are increase from I-, Cl-, to Br-, namely, -6.28, -9.98 and -13.67 kcal/mol, respectively. The coordination number distribution analysis for the first solvation shell of the all hydrated anions indicated a high exchange rate for the first solvation shell ligands.
Keywords
Full Text:
Full Text PDFReferences
[1] Hiraoka, K., and Yamabe, S., 1994, Gas-Phase Cluster Ions: Stability, Structure and Solvation. In: Dynamics of Excited Molecules, Vol. 82; Kuchitsu, K. Ed.; Elsevier Science: Amsterdam, 399–475.
[2] Coe, J.V., 1997, J.Phys.Chem. A, 101, 2055-2063.
[3] Ayotte, P., Bailey, C.G., Weddle, G.H., and Johnson, M.A., 1998, J. Phys. Chem A, 102, 3067.
[4] Bailey, C.G. Kim, J. Dessent, C.E.H., and Johnson, M.A., 1997, Chem. Phys. Lett., 269, 122.
[5] Hiraoka, K., Mizuse, S., and Yamabe, S., 1988, Chem.Phys.Lett., 147, 174.
[6] Markovich, G., Pollack, S., Giniger, R., and Cheshnovsky, O.J., 1994, J. Chem. Phys., 101, 9344.
[7] Coe, J.V., 1994, Chem.Phys.Lett, 229, 161.
[8] Tanabe, F.K.J., Morgon, N.H., and Riveros, J.M., 1996, J. Phys. Chem, 100, 2862.
[9] Xantheas, S.S., 1996, J. Phys. Chem, 100, 9703.
[10] Xantheas, S.S., and Dang, L.X., 1996, J. Phys. Chem., 100, 3989.
[11] Xantheas, S. S. and Dunning, T.H.,Jr., 1994, J. Phys. Chem., 98, 13489.
[12] Tongraar, A., and Rode, B.M., 2005, Chem. Phys. Lett., 403, 314.
[13] Tongraar, A., Hannongbua, S., and Rode, B. M., 1997, Chem. Phys., 219, 279-290
[14] Pranowo, H.D., Setiaji, A.H.B., and Rode, B.M., 1999, J. Phys. Chem. A, 103, 11115
[15] Schaefer, A., Horn, H., and Ahlrichs, R., 1992, J. Chem. Phys., 97, 2571.
[16] Dunning, T.H., Jr. 1970, J. Chem. Phys., 53, 2823.
[17] Benedict, W.S. and Plyler, E.K., 1985, Can. J. Phys., 35, 890.
[18] Jancso, G. and Heinzinger, K.Z., 1985, Naturforsch., 40a, 1235.
[19] Allen, M.P., and Tiedesley, D.J., 1987, Computer Simulation of Liquids; Oxford University Press: Oxford, U. K.
[20] Gao, J., Garner, D.S., and Jorgensen, W.L., 1986, J. Am. Chem. Soc., 108, 4784.
[21] Tanabe, F.K.J., Morgon, N.H. and Riveros, J.M., 1996, J. Phys. Chem., 100, 2862.
[22] Combariza, J.E., Kestner, N.R., and Jortner, J., 1993, Chem. Phys. Lett., 203, 423.
[23] Pranowo, H.D.,and Rode, B.M., 1999, J. Phys. Chem. A, 103, 4298.
DOI: https://doi.org/10.22146/ijc.21691
Article Metrics
Abstract views : 1203 | views : 823Copyright (c) 2010 Indonesian Journal of Chemistry
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.
View The Statistics of Indones. J. Chem.