Photocatalytic Degradation of Diazinon Using Titanium Oxide Synthesized by Alkaline Solvent
Mohammad Rofik Usman(1), Atiek Rostika Noviyanti(2), Diana Rakhmawaty Eddy(3*)
(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang km. 21, Jatinangor, Sumedang, West Java 45363
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang km. 21, Jatinangor, Sumedang, West Java 45363
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang km. 21, Jatinangor, Sumedang, West Java 45363
(*) Corresponding Author
Abstract
Keywords
Full Text:
Full Text PdfReferences
[1] Carneiro, P.A., Osugi, M.E., Sene, J.J., Anderson, M.A., and Zanoni, M.V.B., 2004, Evaluation of color removal and degradation of a reactive textile azo dye on nanoporous TiO2 thin-film electrodes, Electrochim. Acta, 49 (22-23), 3807–3820.
[2] Prieto, O., Fermoso, J., Nuñez, Y., del Valle, J.L., and Irusta, R., 2005, Decolouration of textile dyes in wastewaters by photocatalysis with TiO2, Sol. Energy, 79 (4), 376–383.
[3] Pekakis, P.A., Xekoukoulotakis, N.P., and Mantzavinos, D., 2006, Treatment of textile dyehouse wastewater by TiO2 photocatalysis, Water Res., 40 (6), 1276–1286.
[4] Manurung, P., Situmeang, R., Ginting, E., and Pardede, I., 2015, Synthesis and characterization of titania-rice husk silica composites as photocatalyst, Indones. J. Chem., 15 (1), 36–42.
[5] Lhomme, L., Brosillon, S., and Wolbert, D., 2008, Photocatalytic degradation of pesticides in pure water and a commercial agricultural solution on TiO2 coated media, Chemosphere, 70 (3), 381–386.
[6] Affam, A.C., and Chaudhuri, M., 2013, Degradation of pesticides chlorpyrifos, cypermethrin and chlorothalonil in aqueous solution by TiO2 photocatalysis, J. Environ. Manage., 130, 160–165.
[7] Valencia, S., Marín, J.M., and Restrepo, G., 2010, Study of the bandgap of synthesized titanium dioxide nanoparticules using the sol-gel method and a hydrothermal treatment, TOMSJ, 4, 9–14.
[8] Massard, C., Boudeaux, D., Raspal, V., Feschet-Chassot, E., Sibaud, Y., Caudron, E., Devers, T., and Awitor, K.O., 2012, One-pot synthesis of TiO2 nanoparticles in suspensions for quantification of titanium debris release in biological liquids, ANP, 1, 86–94.
[9] Maryani, Y., and Kustiningsih, I., 2015, Determination and characterization of photocatalytic products of linear alkyl sulphonate by high performance liquid chromatography and nuclear magnetic resonance, Procedia Chem., 17, 216–223.
[10] Zuas, O., Kim, J.S., and Gunlazuardi, J., 2014, Influence of operational parameters on the photocatalytic activity of powdered TiO2 for the reduction of CO2, Indones. J. Chem., 14 (2), 122–130.
[11] Castro, A.L., Nunes, M.R., Carvalho, A.P., Costa, F.M., and Florêncio, M.H., 2008, Synthesis of anatase TiO2 nanoparticles with high temperature stability and photocatalytic activity, Solid State Sci., 10 (5), 602–606.
[12] Madhumitha, G., and Roopan, S.M., 2013, Devastated crops: Multifunctional efficacy for the production of nanoparticles, J. Nanomater., 2013, 1–12.
[13] Abbas, Z., Holmberg, J.P., Hellström, A.K., Hagström, M., Bergenholtz, J., Hassellöv, M., and Ahlberg, E., 2011, Synthesis, characterization and particle size distribution of TiO2 colloidal nanoparticles, Colloids Surf., A, 384 (1-3),
254–261.
[14] Zhang, Y., Xiong, G., Yao, N., Yang, W., and Fu, X., 2001, Preparation of titania-based catalysts for formaldehyde photocatalytic oxidation from TiCl4 by the sol–gel method, Catal. Today, 68 (1-3), 89–95.
[15] Behnajady, M.A., Eskandarloo, H., Modirshahla, N., and Shokri, M., 2011, Investigation of the effect of sol–gel synthesis variables on structural and photocatalytic properties of TiO2 nanoparticles, Desalination, 278 (1-3), 10–17.
[16] Kolen'ko, Y.V., Churagulov, B.R., Kunst, M., Mazerolles, L., and Colbeau-Justin, C., 2004, Photocatalytic properties of titania powders prepared by hydrothermal method, Appl. Catal., B, 54 (1), 51–58.
[17] Hanaor, D.A.H., and Sorrell, C.C., 2010, Review of the anatase to rutile phase transformation, J. Mater. Sci., 46 (4), 855–874.
[18] Collazzo, G.C., Jahn, S.L., Carreño, N.L.V., and Foletto, E.L., 2011, Temperature and reaction time effects on the structural properties of titanium dioxide nanopowders obtained via the hydrothermal method, Braz. J. Chem. Eng., 28 (2), 265–272.
[19] Zhang, J., Xiao, X., and Nan, J., 2010, Hydrothermal-hydrolysis synthesis and photocatalytic properties of nano-TiO2 with an adjustable crystalline structure, J. Hazard. Mater., 176 (1-3), 617–622.
[20] Lee, H.Y., and Kale, G.M., 2008, Hydrothermal synthesis and characterization of nano-TiO2, Int. J. Appl. Ceram. Technol., 5 (6), 657–665.
[21] Parra, R., Góes, M.S., Castro, M.S., Longo, E., Bueno, P.R., and Varela, J.A., 2008, Reaction pathway to the synthesis of anatase via the chemical modification of titanium isopropoxide with acetic acid, Chem. Mater., 20 (1), 143–150.
[22] Seok, S.I., Vithal, M., and Chang, J.A., 2010, Colloidal TiO2 nanocrystals prepared from peroxotitanium complex solutions: Phase evolution from different precursors, J. Colloid Interface Sci., 346 (1), 66–71.
[23] Yin, H., Wada, Y., Kitamura, T., Sumida, T., Hasegawa, Y., and Yanagida, S., 2002, Novel synthesis of phase-pure nano-particulate anatase and rutile TiO2 using TiCl4 aqueous solutions, J. Mater. Chem., 12 (2), 378–383.
[24] Oh, J.K., Lee, J.K., Kim, S.J., and Park, K.W., 2009, Synthesis of phase and shape-controlled TiO2 nanoparticles via hydrothermal process, J. Ind. Eng. Chem., 15 (2), 270–274.
[25] Wang, Y., Zhang, L., Deng, K., Chen, X., and Zou, Z., 2007, Low temperature synthesis and photocatalytic activity of rutile TiO2 nanorod superstructures, J. Phys. Chem. C, 111 (6), 2709–2714.
[26] WHO, 2010, The WHO Recommended Classification of Pesticides by Hazard and Guidelines to Classification 2009, International Programme on Chemical Safety, Stuttgart.
[27] Ditjen PSP, 2012, Pestisida Terdaftar dan Diizinkan, Bagian Evaluasi dan Pelaporan, Jakarta.
[28] Hunter, B.A., 1997, Rietica for Windows, ver.1.7.7.
[29] Rahayu, W.S., Hartanti, D., and Handoyo, 2016, Analisis residu pestisida organofosfat pada simplisia temulawak (Curcuma xanthorrhiza Roxb.) dengan metode spektrofotometri visibel, Pharmacy, 6 (3), 1–10.
[30] Hayle, S.T., and Gonfa, G.G., 2014, Synthesis and characterization of titanium oxide nanomaterials using sol-gel method, Am. J. Nanosci. Nanotechnol., 2 (1), 1–7.
[31] Wang, X.Y., Liu, Z., Liao, H., Klein, D., and Coddet, C., 2005, Deoxidisation and phase analysis of plasma sprayed TiO2 by X-ray Rietveld method, Thin Solid Films, 473 (2), 177–184.
[32] Inorganic Crystal Structure Database (ICSD), 172916, 2008, United States.
[33] Inorganic Crystal Structure Database (ICSD), 109469, 2007, United States.
[34] Bakardjieva, S., Šubrt, J., Štengl, V., Dianez, M.J., and Sayagues, M.J., 2005, Photoactivity of anatase–rutile TiO2 nanocrystalline mixtures obtained by heat treatment of homogeneously precipitated anatase, Appl. Catal., B, 58 (3-4), 193–202.
[35] Zhang, H., and Banfield, J.F., 1999, New kinetic model for the nanocrystalline anatase-to-rutile transformation revealing rate dependence on number of particles, Am. Mineral., 84, 528–535.
[36] Suttiponparnit, K., Jiang, J., Sahu, M., Suvachittanont, S., Charinpanitkul, T., and Biswas, P., 2011, Role of surface area, primary particle size, and crystal phase on titanium dioxide nanoparticle dispersion properties, Nanoscale Res. Lett., 6 (27), 1–8.
[37] Ou, H.H., and Lo, S.L., 2007, Review of titania nanotubes synthesized via the hydrothermal treatment: Fabrication, modification, and application, Sep. Purif. Technol., 58 (1), 179–191.
[38] Sikhwivhilu, L.M., Ray, S.S., and Coville, N.J., 2008, Influence of bases on hydrothermal synthesis of titanate nanostructures, Appl. Phys. A, 94 (4), 963–973.
[39] Mao, X., Song, X., Lu, G., Sun, Y., Xu, Y., and Yu, J., 2014, Effects of metal ions on crystal morphology and size of calcium sulfate whiskers in aqueous HCl solutions, Ind. Eng. Chem. Res.,
53 (45), 17625–17635.
[40] Song, S.Y., and Ok, K.M., 2015, Modulation of framework and centricity: cation size effect in new quaternary selenites, ASc(SeO3)2 (A = NA, K, Rb, and Cs), Inorg. Chem., 54 (10), 5032–5038.
[41] Landmann, M., Rauls, E., and Schmidt, W.G., 2012, The electronic structure and optical response of rutile, anatase and brookite TiO2, J. Phys. Condens. Matter., 24 (19), 1–6.
DOI: https://doi.org/10.22146/ijc.23548
Article Metrics
Abstract views : 3874 | views : 2820Copyright (c) 2017 Indonesian Journal of Chemistry
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.
View The Statistics of Indones. J. Chem.