Density Functional Theory (DFT) and Natural Bond Orbital (NBO) Analysis of Intermolecular Hydrogen Bond Interaction in "Phosphorylated Nata De Coco - Water"

Sitti Rahmawati(1*), Cynthia Linaya Radiman(2), Muhamad Abdulkadir Martoprawiro(3)

(1) Chemistry of Courses, Mathematics and Sciences Educational Division, Faculty of Teacher Training and Educational Sciences, Universitas Tadulako Inorganic and Physical Chemistry Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung
(2) Inorganic and Physical Chemistry Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung
(3) Inorganic and Physical Chemistry Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung
(*) Corresponding Author


This study aims to study the conformation, the hydrogen bond network, and the stabilities of all the possible intermolecular interactions in phosphorylated nata de coco membrane with water (NDCF-(H2O)n, n = 1-5). Analysis of natural bond orbital (NBO) was performed to measure the relative strength of the hydrogen bonding interactions, charge transfer, particularly the interactions of n-σ * O-H and to take into account the effect on the stabilities of the molecular structure. All calculation were performed using density functional theory (DFT) method, at B3LYP functional level of theory and 6-311 G** basis set. The charge transfer between the lone pair of a proton acceptor to the anti-bonding orbital of the proton donor provides the substantial to the stabilization of the hydrogen bonds. Interaction between NDCF and (H2O)5 was strongest with the stabilization energy of 37.73 kcal/mol, that indicate the ease of donating lone pair electrons. The contributions of each hydrogen bond to the stability of the complex have been analyzed.


proton transfer; hydrogen bonds; phosphorylated nata de coco; NBO

Full Text:

Full Text PDF


[1] Wang, Y., Chen, K.S., Mishler, J., Cho, S.C., and Adroher, X.C., 2011, A review of polymer electrolyte membrane fuel cells: Technology, applications, Appl. Energy, 88 (4), 981–1007.

[2] Kuang, K., and Easler, K., 2007, Fuel Cell Electronics Packaging, Springer, New York.

[3] Won, J., Choi, S.W., Kang, Y.S., Ha, H.Y., Oh, I.H., Kim, H.S., Kim, K.T., and Jo, W.H., 2003, Structural characterization and surface modification of sulfonated polystyrene-(ethylene-butylene)-styrene triblock proton exchange membranes, J. Membr. Sci., 214 (2), 245–257.

[4] Zaidi, S.M.J., and Matsuura, T., 2009, Polymer Membranes for Fuel Cells, Springer, New York.

[5] Youssef, M.E.S., Al-Nadi, K.E., and Khalil, M.H., 2010, Lumped model for Proton Exchange Membrane Fuel Cell (PEMFC), Int. J. Electrochem. Sci., 5, 267–277.

[6] Mecheri, B., D’Epifanio, A., Traversa, E., and Licoccia, S., 2008, Sulfonated polyether ether ketone and hydrated tin oxide proton conducting composites for direct methanol fuel cell applications, J. Power Sources, 178 (2), 554–560.

[7] Song, Y.A., Batista, C., Sarpeshkar, R., and Han, J., 2008, Rapid fabrication of microfluidic polymer electrolyte membrane fuel cell in PDMS by surface patterning of perfluorinated ion-exchange resin, J. Power Sources, 183 (2), 674–677.

[8] Bae, B., Ha, H.Y., and Kim, D.J., 2006, Nafion®-graft-polystyrene sulfonic acid membranes for direct methanol fuel cells, J. Membr. Sci., 276 (1-2), 51–58.

[9] Liu, Q., Song, L., Zhang, Z., and Liu, X., 2010, Preparation and characterization of the PVDF-based composite membrane for direct methanol fuel cells, Int. J. Energy Environ., 1 (4), 643–656.

[10] Devanathan, R., Venkatnathan, A., and Dupuis, M., 2007, Atomistic simulation of nafion membrane: I. Effect of hydration on membrane nanostructure, J. Phys. Chem. B, 111 (28), 8069–8079.

[11] Wilkinson, D.P., Zhang, J., Hui, R., Fergus, J., and Li, X., 2010, Proton Exchange Membrane Fuel Cell Material Properties and Performance, CRC Press, New York.

[12] Haile, S.M., 2003, Fuel cell materials and components, Acta Mater., 51 (19), 5981–6000.

[13] Neburchilov, V., Martin, J., Wang, H., and Zhang, J., 2007, A review of polymer electrolyte membranes for direct methanol fuel cells, J. Power Sources, 169 (2), 221–238.

[14] Radiman, C.L., and Rifathin, A., 2013, Preparation of phosphorylated nata-de-coco for polymer electrolyte membrane applications, J. Appl. Polym. Sci., 130 (1), 399–405.

[15] Kolandaivel, P., and Nirmala, V., 2004, Study of proper and improper hydrogen bonding using Bader's atoms in molecules (AIM) theory and NBO analysis, J. Mol. Struct., 694 (1-3), 33–38.

[16] Majerz, I., 2012, Directionality of inter- and intramolecular OHO hydrogen bonds: DFT study followed by AIM and NBO analysis, J. Phys. Chem. A, 116 (30), 7992–8000.

[17] Clark, J,K., Paddison, S.J., and Hamrock, S.J., 2012, The effect of hydrogen bond reorganization and equivalent weight on proton transfer in 3M perfluorosulfonic acid ionomers, Phys. Chem. Chem. Phys., 14 (47), 16349–16359.

[18] Yan, S., Kang, S., Hayashi, T., Mukamel, S., and Lee, J.Y., 2009, Computational studies on electron and proton transfer in phenol-imidazole-base triads, J. Comput. Chem., 31 (2), 393–402.

[19] Gaussian 09, Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Petersson, G.A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A., Bloino, J., Janesko, B.G., Gomperts, R., Mennucci, B., Hratchian, H.P., Ortiz, J.V., Izmaylov, A.F., Sonnenberg, J.L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V.G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J.A., Peralta, Jr., J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Millam, J.M., Klene, M., Adamo, C., Cammi, R., Ochterski, J.W., Martin, R.L., Morokuma, K., Farkas, O., Foresman, J.B., and Fox, D.J., 2009, Gaussian, Inc., Wallingford, CT.

[20] Singla, N., and Chowdhury, P., 2013, Density functional investigation of photo induced Intramolecular Proton Transfer (IPT) in Indole-7-carboxaldehyde and its experimental verification, J. Mol. Struct., 1045, 72–80.

[21] Duarte, F., Vöhringer-Martinez, E., and Toro-Labbé, A., 2011, Insights on the mechanism of proton transfer reactions in amino acids, Phys. Chem. Chem. Phys., 13 (17), 7773–7782.

[22] Paddison, S.J., Kreuer, K.D., and Maier, J., 2006, About the choice of the protogenic group in polymer electrolyte membranes: Ab initio modelling of sulfonic acid, phosphonic acid, and imidazole functionalized alkanes, Phys. Chem. Chem. Phys., 8 (39), 4530–4542.

[23] Hammami, F., Ghalla, H., and Nasr, S., 2015, Intermolecular hydrogen bonds in urea–water complexes: DFT, NBO, and AIM analysis, Comput. Theor. Chem., 1070, 40–47.

[24] Chen, H.Y., and Ji, H.B., 2010, Alkaline hydrolysis of cinnamaldehyde to benzaldehyde in the presence of β-cyclodextrin, AIChE J., 56 (2), 466–476.

[25] Paul, B.K., and Guchhait, N., 2011, Density Functional Theory (DFT) and Natural Bond Orbital (NBO) investigation of intramolecular hydrogen bond interaction and Excited-State Intramolecular Proton Transfer (ESIPT) reaction in a five-membered hydrogen-bonding system 2-(1H-pyrazol-5-yl)pyridine: On the possibility of solvent (water)-assisted ESPT, Comput. Theor. Chem., 972, 1-13.

[26] Behzadi, H., Roonasi, P., Momeni, M.J., Manzetti, S., Esrafili, M.D., Obot, I.B., Yousefvand, M., and Mousavi-Khoshdel, S.M., 2015, A DFT study of pyrazine derivatives and their Fe complexes in corrosion inhibition process, J. Mol. Struct., 1086, 64–72.

[27] Dinar, K., Sahra, K., Seridi, A., and Kadri, M., 2014, Inclusion complexes of N-sulfamoyloxazolidinones with β-cyclodextrin: A molecular modeling approach, Chem. Phys. Lett., 595-596, 113–120.


Article Metrics

Abstract views : 4950 | views : 3714

Copyright (c) 2017 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Analytics View The Statistics of Indones. J. Chem.