A Green Synthesis of a Novel Calix[4]Resorcinarene from 7-Hydroxycitronellal Using Microwave Irradiation


Ratnaningsih Eko Sardjono(1*), Iqbal Musthapa(2), Iis Rosliana(3), Fitri Khoerunnisa(4), Galuh Yuliani(5)

(1) Department of Chemistry, Universitas Pendidikan Indonesia
(2) Department of Chemistry, Universitas Pendidikan Indonesia
(3) Department of Chemistry, Universitas Pendidikan Indonesia
(4) Department of Chemistry, Universitas Pendidikan Indonesia
(5) Department of Chemistry, Universitas Pendidikan Indonesia
(*) Corresponding Author


A new versatile macromolecule cyclic C-3,7-dimethyl-7-hydroxycalix[4]resorcinarene (CDHHK4R) has been synthesized from a fragrance agent, 7-hydroxycitronellal, via microwave irradiation. The reaction utilized a domestic microwave oven at various irradiation time and power to yield an optimum condition. As a comparison, the conventional heating method was also employed for the synthesis of the same calix[4]resorcinarene. Compared to the conventional method, microwave-assisted reaction effectively reduced the reaction time, the amount of energy consumption and the waste production. It is found that the synthesis of CDHHK4R by microwave irradiation yielded 77.55% of product, higher than by conventional heating which was only 62.17%.


calix[4]resorcinarene; 7-hydroxycitronellal; microwave irradiation

Full Text:

Full Text PDF


[1] Gutsche, C.D., Rogers, J.S., Stewart, D., and See, K.A., 1990, Calixarenes: Paradoxes and paradigms in molecular baskets, Pure Appl. Chem., 62 (3), 485–491.

[2] Yilmaz, M., and Erdemir, S., 2013, Calixarene-based receptors for molecular recognition, Turk. J. Chem., 37, 558–585.

[3]Agrawal, Y.K., Pancholi, J.P., and Vyas, J.M., 2009, Design and synthesis of calixarene, J. Sci. Ind. Res., 68 (9), 745–768.

[4] Shah, M.D., and Agrawal, Y.K., 2012, Calixarene: A new architecture in the analytical and pharmaceutical technology, J. Sci. Ind. Res., 71 (1), 21–26.

[5] Sardjono, R.E., Kadarohman, A., and Mardhiyah, A., 2012, Green synthesis of some calix[4]resorcinarene under microwave irradiation, Procedia Chem., 4, 224–231.

[6] Beyeh, N.K., Aumanen, J., Åhman, A., Luostarinen, M., Mansikkamäki, H., Nissinen, M., Korppi-Tommola, J., and Rissanen, K., 2007, Dansylated resorcinarenes, New J. Chem., 31, 370–376.

[7] Echigo, M., and Yamakawa, M., Calix[4]arenes bearing 2-propenyl groups, their manufacture, radiation-sensitive resists containing them, and formation of resist patterns, Patent PCT Int. Appl., WO2013073583A1, 2013.

[8] Kiegiel, K., Steczek, L., and Zakrzewska-Trznadel, G., 2013, Application of calixarenes as macrocyclic ligands for uranium(VI): A review, J. Chem., 2013, 1–16.

[9] Menon, S.K., Patel, R.V., and Panchal, J.G., 2010, The synthesis and characterization of calix[4]arene based azo dyes, J. Incl. Phenom. Macrocycl. Chem., 67, 73–79.

[10] Pillai, S.G., Dwivedi, A.H., and Patni, N., 2013, Liquid-liquid extraction and spectrophotometric determination of vanadium(V) with p-carboxy-N-phenyl-calix[4]resorcinarene-hydroxamic acid, Procedia Eng., 51, 347–354.

[11] Bhatt, K.D., Makwana, B.A., Vyas, D.J., Mishra, D.R., and Jain, V.K., 2014, Selective recognition by novel calix system: ICT based chemosensor for metal ions, J. Lumin., 146, 450–457.

[12] Qiao, Q., Jin, G., and Hu, X., 2011, Potentiometric detection of chromium (III) on the carbon fiber electrode modified by n-hexyl calix[4]resorcinarene, Sens. Actuators, B, 160 (1), 87–93.

[13] Benosmane, N., Guedioura, B., Hamdi, S.M., Hamdi, M., and Boutemeur, B., 2010, Preparation, characterization and thermal studies of polymer inclusion cellulose acetate membrane with calix [4] resorcinarenes as carriers, Mater. Sci. Eng., C, 30 (6), 860–867.

[14] Ansari, S.A., Mohapatra, P.K., Verboom, W., and Iqbal, M., 2012, Novel calix[4]arene functionalized diglycolamides for separation of actinides: Supported liquid membrane studies, Procedia Eng., 44, 959–960.

[15] Mouradzadegun, A., Kiasat, A.R., Fard, P.K., 2012, 3D-network porous polymer based on calix[4]resorcinarenes as an efficient phase transfer catalyst in regioselective conversion of epoxides to azidohydrins, Catal. Commun., 29, 1–5.

[16] Jain, V.K., Pillai, S.G., Pandya, R.A., Agrawal, Y.K., and Shrivastav, P.S., 2005, Selective extraction, preconcentration and transport studies of thorium(IV) using octa-functionalized calix[4]resorcinarene-hydroxamic acid, Anal. Sci., 21 (2), 129–135.

[17] Jumina, Sarjono, R.E., Siswanta, D., Santosa, S.J., and Ohto, K., 2011, Adsorption characteristics of Pb(II) and Cr(III) onto C-methylcalix[4]resorcinarene, J. Korean Chem. Soc., 55 (3), 454–462.

[18] Jumina, Sarjono, R.E., Paramitha, B., Hendaryani, I., Siswanta, D., Santosa, S.J., Anwar, C., Sastrohamidjojo, H., Ohto, K., and Oshima, T., 2007, Adsorption characteristics of Pb(II) and Cr(III) onto C-4-methoxyphenylcalix[4]resorcinarene in batch and fixed bed column systems, J. Chin. Chem. Soc., 54 (5), 1167–1178.

[19] Suh, J.K., Kim, I.W., Chang, S.H., Kim, B.E., Ryu, J.W., and Park, J.H., 2000, Separation of positional isomers on a calix[4]arene-methylsiloxane polymer as stationary phase in capillary GC, Bull. Korean Chem. Soc., 22 (4), 409–412.

[20] Śliwka-Kaszyńska, M., 2007, Calixarenes as stationary phases in high performance liquid chromatography, Crit. Rev. Anal. Chem., 37 (3), 211–224.

[21] Mchedlov-Petrossyan, N.O., Vilkova, L.N., Vodolazkaya, N.A., Yakubovskaya, A.G., Rodik, R.V., Boyko, V.I., and Kalchenko, V.I., 2006, The nature of aqueous solutions of a cationic calix[4]arene: A comparative study of dye–calixarene and dye–surfactant interactions, Sensors, 6 (8), 962–977.

[22] Osipov, M., Chu, Q., Geib, S.J., Curran, D.P., and Weber, S.G., 2008, Synthesis of deep-cavity fluorous calix[4]arenes as molecular recognition scaffolds, Beilstein J. Org. Chem., 4 (36), 6–11.

[23] Ishii, H., Shibata, M., Kashimura, T., Yomogida, T., Sekikawa, M., and Owada, T., Calix[4]arene-type cyclic compound-containing films, interlayer insulator films and optical films therefrom, semiconductor devices therewith, and other applications, Patent Jpn. Kokai Tokkyo Koho, JP2010140760A, 2010.

[24] Kashimura, T., Ishii, H., and Shiotani, H., Calix[4]resorcinarenes bearing photoreactive groups, photoresist base components containing them, photoresists, microfabrication using photoresists, semiconductor devices manufactured by microfabrication, and apparatus with semiconductor devices, Patent Jpn. Kokai Tokkyo Koho, JP2013100261A, 2013.

[25] Shiotani, H., Kashimura, T., Ishii, H., and Owada, T., Radiation-sensitive compositions containing calixresorcinarenes, photoresist compositions containing them, microfabrication using them, semiconductor devices prepared therewith, and apparatus equipped with them, Patent Jpn. Kokai Tokkyo Koho, JP2012078824A, 2012.

[26] Roberts, B.A., and Strauss, C.R., 2005, Toward rapid, “Green”, predictable microwave-assisted synthesis, Acc. Chem. Res., 38 (8), 653–666.

[27] O'Farrell, C.M., Hagan, H.A., Wenzel, T.J., 2009, Water-soluble calix[4]resorcinarenes as chiral NMR solvating agents for bicyclic aromatic compounds, Chirality, 21 (10), 911–921.

[28] Kashimura, T., Shiotani, H., Owada, T., and Ishii, H., Calix[4]resorcinarenes bearing acid-labile groups, photoresist base materials and photoresists containing them, and micromachining using photoresists, Patent Jpn. Kokai Tokkyo Koho, JP2012077077A, 2010.

[29] Darvish, F., and Khazraee, S., 2014, Molecular iodine: An efficient and environment-friendly catalyst for the synthesis of calix[4]resorcinarenes, C.R. Chim., 17 (9), 890–893.

[30] Karami, B., Hoseini, S.J., Nikoseresht, S., and Khodabakhshi, S., 2012, Fe3O4 nanoparticles: A powerful and magnetically recoverable catalyst for the synthesis of novel calix[4]resorcinarenes, Chin. Chem. Lett., 23 (2), 173–176.

[31] Baozhi, L., Gengliang, Y., and Kefang, D., 2004, Microwave-assisted synthesis of p-alkylcalix[n]arene catalyzed by KOH, E-J. Chem., 2 (1), 70–74.

[32] Kantar, C., Ağar, E., and Şaşmaz, S., 2009, The microwave-assisted synthesis and characterization of novel, octakis(2-hydroxyethoxy)resorcinarene bridged polymeric metallophthalocyanines, Polyhedron, 28 (16), 3485–3490.

[33] Nayak, S.K., and Choudhary, M.K., 2012, Microwave-assisted synthesis of 1,3-dialkyl ethers of calix[4]arenes: application to the synthesis of cesium selective calix[4]crown-6 ionophores, Tetrahedron Lett., 53 (2), 141–144.

[34] Hedidi, M., Hamdi, S.M., Mazari, T., Boutemeur, B., Rabia, C., Chemat, F., and Hamdi, M., 2006, Microwave-assisted synthesis of calix[4]resorcinarenes, Tetrahedron, 62 (24), 5652–5655.

[35] Barret, A.G.M., Braddock, D.C., Henschke, J.P., Walker, E.R., 1999, Ytterbium(III) triflate-catalysed preparation of calix[4]resorcinarenes: Lewis assisted Brønsted acidity, J. Chem. Soc., Perkin Trans., 1, 8, 873–878.

DOI: https://doi.org/10.22146/ijc.25466

Article Metrics

Abstract views : 3763 | views : 3177

Copyright (c) 2017 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Analytics View The Statistics of Indones. J. Chem.