Preparation of Cassava Bagasse Starch-Based Biodegradable Film Reinforced with Chicken Feet Gelatin, Citric Acid as Crosslinker, and Glycerol as Plasticizer

https://doi.org/10.22146/ijc.26766

Silviana Silviana(1*), Piontek Benedictus Brandon(2), Bella Ayu Silawanda(3)

(1) Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Jl. Prof. Sudarto, SH, Kampus Tembalang, Semarang 50268, Indonesia
(2) Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Jl. Prof. Sudarto, SH, Kampus Tembalang, Semarang 50268, Indonesia
(3) Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Jl. Prof. Sudarto, SH, Kampus Tembalang, Semarang 50268, Indonesia
(*) Corresponding Author

Abstract


Chicken feet is one of sources used to produce biodegradable films due to inexpensive and abundant source. Chicken feet contains extracted gelatin amount of 27.61 to 33%. This biofilm was prepared from cassava bagasse starch with citric acid as cross-linker and glycerol as plasticizer. Cassava bagasse contains about 40–64% of starch. This paper observes the optimum composition of cassava bagasse starch-based biofilm preparation upon Central Composite Design with variables of gelatin, glycerol, and citric acid concentration with response of tensile strength and elongation at break. This research was executed in several steps, i.e. extraction of gelatin, extraction of cassava bagasse starch, and casting. Optimum condition of this biofilm preparation can be obtained at 12.98% w of gelatin content, 0.22% w of glycerol and 0.27% w of citric acid by releasing 21.73 MPa of tensile strength and 19.73% of elongation at break. Mass loss of biofilm with lower gelatin content gave almost the same mass loss for blank biofilm (cassava bagasse starch-based without gelatin content). Increasing of gelatin content in the biofilm, increasing of the biofilm mass loss. However, the biofilm had good thermal stability by thermal gravimetric analysis with higher temperature to obtain inorganic residue than that of blank biofilm.

Keywords


biofilm; cassava bagasse starch; chicken feet; gelatin

Full Text:

Full Text PDF


References

[1] Alves, V.D., Ferreira, A.R., Costa, N., Freitas, F., Reis, M.A.M., and Coelhoso, I.M., 2011, Characterization of biodegradable films from the extracellular polysaccharide produced by Pseudomonas oleovorans grown on glycerol byproduct, Carbohydr. Polym., 83 (4), 1582–1590.

[2] Reddy, N., Chen, L., and Yang, Y., 2013, Biothermoplastics from hydrolyzed and citric acid crosslinked chicken feathers, Mater. Sci. Eng., C, 33 (3), 1203–1208.

[3] González, A., and Igarzabal, C.I.A., 2013, Soy protein – Poly (lactic acid) bilayer films as biodegradable material for active food packaging, Food Hydrocoll., 33 (2), 289–296.

[4] Ferreira, A.R.V, Torres, C.A.V, Freitas, F., Reis, M.A.M., Alves, V.D., and Coelhoso, I.M., 2014, Biodegradable films produced from the bacterial polysaccharide FucoPol, Int. J. Biol. Macromol., 71, 111–116.

[5] Cercel, F., Stroiu, M., Alexe, P., and Ianiţchi, D., 2015, Characterization of myofibrillar chicken breast proteins for obtain protein films and biodegradable coatings generation, Agric. Agric. Sci. Procedia, 6, 197–205.

[6] Salgado, P.R., Ortiz, S.E.M., Petruccelli, S., and Mauri, A.N., 2010, Biodegradable sunflower protein films naturally activated with antioxidant compounds, Food Hydrocolloids, 24 (5), 525–533.

[7] Souza, A.C., Benze, R., Ferrão, E.S., Ditchfield, C., Coelho, A.C.V., and Tadini, C.C., 2012, Cassava starch biodegradable films: Influence of glycerol and clay nanoparticles content on tensile and barrier properties and glass transition temperature, LWT Food Sci. Technol., 46 (1), 110–117.

[8] Tapia-Blácido, D., Sobral, P.J., and Menegalli, F.C., 2005, Development and characterization of biofilms based on amaranth flour (Amaranthus caudatus), J. Food Eng., 67 (1-2), 215–223.

[9] Sousa, G.M., Jünior, M.S.S., and Yamashita, F., 2013, Active biodegradable films produced with blends of rice flour and poly(butylene adipate co-terephthalate): Effect of potassium sorbate on film characteristics, Mater. Sci. Eng., C, 33 (6), 3153–3159.

[10] Mendes, J.F., Paschoalin, R.T., Carmona, V.B., Neto, A.R.S., Marques, A.C.P., Marconcini, J.M., Mattoso, L.H.C., Medeiros, E.S., and Oliveira, J.E., 2016, Biodegradable polymer blends based on corn starch and thermoplastic chitosan processed by extrusion, Carbohydr. Polym., 137, 452–458.

[11] Taufik and Fatma, 2009, “Karakterisasi Edible Film Berbahan Dasar Gelatin Kulit Kaki Broiler” in Seminar Nasional Peternakan, Universitas Hasanudin, 220–228.

[12] Hasdar, M., Erwanto, Y., and Triatmojo, S., 2011, Karakteristik edible film yang diproduksi dari kombinasi gelatin kulit kaki ayam dan soy protein isolate, Buletin Peternakan, 35 (3), 188–196.

[13] Hidayati, K., and Nugraha I., 2014, Sintesis dan karakteristisasi komposit edible film berbahan dasar gelatin ceker ayam dan montmorillonit, Seminar Nasional Kimia dan Pendidikan Kimia VI, PMIPA FKIP UNS.

[14] Yun, H., Kim, M.K., Kwak, H.W., Lee, J.Y., Kim, M.H., and Lee, K.H., 2016, The role of glycerol and water in flexible silk sericin film, Int. J. Biol. Macromol., 82, 945–951.

[15] Okoye, P.U., and Hameed, B.H., 2016, Review on recent progress in catalytic carboxylation and acetylation of glycerol as a byproduct of biodiesel production, Renewable Sustainable Energy Rev., 53, 558–574.

[16] Olsson, E., Hedenqvist, M.S., Johansson, C., and Järnström, L., 2013, Influence of citric acid and curing on moisture sorption, diffusion and permeability of starch films, Carbohydr. Polym., 94 (2), 765–772.

[17] Mekonnen, T., Mussone, P., Khalil, H., and Bressler, D., 2013, Progress in bio-based plastics and plasticizing modifications, J. Mater. Chem. A, 1, 13379–13398.

[18] Rammaya, K., Ying, V.Q., and Babji, A.S., Physicochemical analysis of gelatin extracted from mechanically deboned chicken meat (MDCM) residue, 5 (1), Int. J. Food Nutr. Public Health, 147–168.

[19] Lee, J.H., Lee, J., and Song, K.B., 2015, Development of a chicken feet protein film containing essential oils, Food Hydrocolloids, 46, 208–215.

[20] Firdaus, F., 2004, Potensi limbah padat-cair industri tepung tapioka sebagai bahan baku film plastik biodegradabel, Jurnal Logika, 1 (2), 38–44.

[21] Penjumras, P., Rahman, R.A., Talib, R.A., and Abdan, K., 2015, Response surface methodology for the optimization of preparation of biocomposites based on poly(lactic acid) and durian peel cellulose, Sci. World J., 2015, 293609.

[22] Hivechi, A., Bahrami, S.H., Arami, M., and Karimi, A., 2015, Ultrasonic mediated production of carboxymethyl cellulose : Optimization of conditions using response surface methodology, Carbohydr. Polym., 134, 278–284.

[23] Cao, N., Yang, X., and Fu, Y., 2009, Effects of various plasticizers on mechanical and water vapor barrier properties of gelatin films, Food Hydrocolloids, 23 (3), 729–735.

[24] Reddy, N., and Yang, Y., 2010, Citric acid cross-linking of starch films, Food Chem., 118 (3), 702–711.

[25] Akbar, F., Anita, Z., and Harahap, H., 2013, Pengaruh waktu simpan film plastik biodegradasi dari pati kulit singkong terhadap sifat mekanikalnya, Jurnal Teknik Kimia USU, 2 (2), 37–41.

[26] Seligra, P.G., Jaramillo, C.M., Famá, L., and Goyanes, S., 2016, Biodegradable and non-retrogradable eco-films based on starch-glycerol with citric acid as crosslinking agent, Carbohydr. Polym., 138, 66–74.

[27] Cyras, V.P., Manfredi, L.B., Ton-That, M.T., and Vázquez, A., 2008, Physical and mechanical properties of thermoplastic starch/montmorillonite nanocomposite films, 73, 55–63.

[28] Alcázar-Alay, S.C., and Meireles, M.A.A., 2015, Physicochemical properties, modifications and applications of starches from different botanical sources, Food Sci. Technol., 35 (2), 215–236.

[29] Aydin, A.A., and Ilberg, V., 2016, Effect of different polyol-based plasticizers on thermal properties of polyvinyl alcohol:starch blends, Carbohydr. Polym., 136, 441–448.



DOI: https://doi.org/10.22146/ijc.26766

Article Metrics

Abstract views : 4262 | views : 3993


Copyright (c) 2018 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.