A Novel Molecular Imprint Polymer Synthesis for Solid Phase Extraction of Andrographolide

https://doi.org/10.22146/ijc.34369

Hemavathi Krishnan(1*), A.K.M. Shafiqul Islam(2), Zainab Hamzah(3), Pubalan Nadaraja(4), Mohd Noor Ahmad(5)

(1) Department of Chemical Engineering Technology, Universiti Malaysia Perlis, Uniciti Alam Campus, Sungai Chuchuh, 02100 Padang Besar, Perlis, Malaysia
(2) Department of Chemical Engineering Technology, Universiti Malaysia Perlis, Uniciti Alam Campus, Sungai Chuchuh, 02100 Padang Besar, Perlis, Malaysia
(3) Department of Chemical Engineering Technology, Universiti Malaysia Perlis, Uniciti Alam Campus, Sungai Chuchuh, 02100 Padang Besar, Perlis, Malaysia
(4) Centre of Diploma Studies, Universiti Malaysia Perlis, Uniciti Alam Campus, Sungai Chuchuh, 02100 Padang Besar, Perlis, Malaysia
(5) Department of Electrical and Electronics, British Malaysian Institute, Universiti Kuala Lumpur, 53100 Gombak, Selangor, Malaysia
(*) Corresponding Author

Abstract


Penggunaan polimer yang dicetak secara molekuler untuk ekstraksi mikro fase padat (SPME) dari senyawa bioaktif semakin populer. Ketertarikan pada proses ekstraksi andrographolide yang efisien dari pabrik meningkat karena aplikasi terapetiknya yang luas. Dalam penelitian ini, MIP andrographolide yang dicetak dibuat dengan metode polimerisasi presipitasi menggunakan teknik non-kovalen untuk digunakan sebagai bahan sorben untuk ekstraksi fase padat dari senyawa bioaktif. Perangkat lunak HyperChem 8.0.10 digunakan untuk menyelidiki dan mengoptimalkan template dan rasio monomer fungsional dalam sistem pra-polimerisasi untuk mensintesis polimer yang dicetak. Pemodelan molekul memberikan informasi tentang interaksi molekuler dan energi bebas Gibbs dari kompleks pra-polimerisasi. Berdasarkan studi komputasi, andrografolida, asam metakrilat (MAA) dan etilen glikol dimetakrilat (EGDMA) digunakan sebagai templat, monomer fungsional, dan cross-linker, masing-masing pada rasio 1: 3: 20. MIP dikarakterisasi oleh studi kinetik dan faktor pencetakan. Parameter yang mengikat untuk pengakuan andrografolida dipelajari dengan menggunakan model isoterm adsorpsi Langmuir, Freundlich dan Langmuir-Freundlich. MIP Andrographolide berisi jumlah situs pengikatan maksimum dengan kapasitas adsorpsi 149,59 μg / g. Data eksperimental SPME paling sesuai dengan model isoterm Langmuir-Freundlich dengan nilai R2 0,997. Penelitian ini menunjukkan bahwa MIPs yang disiapkan oleh presipitasi polimerisasi memberikan kemampuan ekstraksi yang baik menggunakan metode SPME. 20 rasio. MIP dikarakterisasi oleh studi kinetik dan faktor pencetakan. Parameter yang mengikat untuk pengakuan andrografolida dipelajari dengan menggunakan model isoterm adsorpsi Langmuir, Freundlich dan Langmuir-Freundlich. MIP Andrographolide berisi jumlah situs pengikatan maksimum dengan kapasitas adsorpsi 149,59 μg / g. Data eksperimental SPME paling sesuai dengan model isoterm Langmuir-Freundlich dengan nilai R2 0,997. Penelitian ini menunjukkan bahwa MIPs yang disiapkan oleh presipitasi polimerisasi memberikan kemampuan ekstraksi yang baik menggunakan metode SPME. 20 rasio. MIP dikarakterisasi oleh studi kinetik dan faktor pencetakan. Parameter yang mengikat untuk pengakuan andrografolida dipelajari dengan menggunakan model isoterm adsorpsi Langmuir, Freundlich dan Langmuir-Freundlich. MIP Andrographolide berisi jumlah situs pengikatan maksimum dengan kapasitas adsorpsi 149,59 μg / g. Data eksperimental SPME paling sesuai dengan model isoterm Langmuir-Freundlich dengan nilai R2 0,997. Penelitian ini menunjukkan bahwa MIPs yang disiapkan oleh presipitasi polimerisasi memberikan kemampuan ekstraksi yang baik menggunakan metode SPME. MIP Andrographolide berisi jumlah situs pengikatan maksimum dengan kapasitas adsorpsi 149,59 μg / g. Data eksperimental SPME paling sesuai dengan model isoterm Langmuir-Freundlich dengan nilai R2 0,997. Penelitian ini menunjukkan bahwa MIPs yang disiapkan oleh presipitasi polimerisasi memberikan kemampuan ekstraksi yang baik menggunakan metode SPME. MIP Andrographolide berisi jumlah situs pengikatan maksimum dengan kapasitas adsorpsi 149,59 μg / g. Data eksperimental SPME paling sesuai dengan model isoterm Langmuir-Freundlich dengan nilai R2 0,997. Penelitian ini menunjukkan bahwa MIPs yang disiapkan oleh presipitasi polimerisasi memberikan kemampuan ekstraksi yang baik menggunakan metode SPME.

Keywords


Andrographolide; molecularly imprinted polymer; precipitation polymerization; adsorption isotherm

Full Text:

Full Text PDF


References

[1] Thakur, AK, Chatterjee, SS, dan Kumar, V., 2015, potensi andrografolida adaptogenik: Prinsip aktif raja pahit ( Andrographis paniculata ), J. Tradit. Melengkapi. Med. , 5 (1), 42-50.

[2] Wen, L., Xia, N., Chen, X., Li, Y., Hong, Y., Liu, Y., Wang, Z., dan Liu, Y., 2014, Aktivitas antibakteri, antivirus, anti-inflamasi dalam senyawa garam andrographolide, Eur. J. Pharmacol. , 740, 421–427.

[3] Okhuarobo, A., Falodun, JE, Erharuyi, O., Imieje, V., Falodun, A., dan Langer, P., 2014, Memanfaatkan sifat obat dari Andrographis paniculata untuk penyakit dan selanjutnya: Ulasan dari itu fitokimia dan farmakologi, Asian Pac. J. Trop. Dis. , 4 (3), 213–222.

[4] Jada, SR, Subur, GS, Matthews, C., Hamzah, AS, Lajis, NH, Saad, MS, Stevens, MFG, dan Stanslas, J., 2007, Semisintesis dan aktivitas antikanker in vitro dari analog andrografolida, Phytochemistry , 68 (6), 904–912.

[5] Pandeti, S., Sonkar, R., Shukla, A., Bhatia, G., dan Tadigoppula, N., 2013, Sintesis turunan andrographolide baru dan evaluasi aktivitas antidislipidemik, oksidasi-LDL dan antioksidan mereka, Eur . J. Med. Chem , 69, 439-448.

[6] Rao, YK, Vimalamma, G., Rao, CV, dan Tzeng, YM, 2004, Flavonoid dan andrografolida dari Andrographis paniculata , Phytochemistry , 65 (16), 2317–2321.

[7] Song, Y.X., Liu, S.P., Jin, Z., Qin, J.F., and Jiang, Z.Y., 2013, Qualitative and quantitative analysis of Andrographis paniculata by rapid resolution liquid chromatography/time-of-flight mass spectrometry, Molecules, 18 (10), 12192–12207.

[8] Wang, B., Li, J., Huang, W.L., Zhang, H.B., Qian, H., and Zheng, Y.T., 2011, Synthesis and biological evaluation of andrographolide derivatives as potent anti-HIV agents, Chin. Chem. Lett., 22 (7), 781–784.

[9] Chen, H., Ma, Y.B., Huang, X.Y., Geng, C.A., Zhao, Y., Wang, L.J., Guo, R.H., Liang, W.J., Zhang, X.M., and Chen, J.J., 2014, Synthesis, structure-activity relationships and biological evaluation of dehydroandrographolide and andrographolide derivatives as novel anti-hepatitis B virus agents, Bioorg. Med. Chem. Lett., 24 (10), 2353–2359.

[10] Seniya, C., Shrivastava, S., Singh, S., and Khan, G.J., 2014, Analyzing the interaction of a herbal compound Andrographolide from Andrographis paniculata as a folklore against swine flu (H1N1), Asian Pac. J. Trop. Dis., 4 (Suppl. 2), S624–S630.

[11] Ji, L., Zheng, Z., Shi, L., Huang, Y., Lu, B., and Wang, Z., 2015, Andrographolide decreased VEGFD expression in hepatoma cancer cells by inducing ubiquitin/proteasome-mediated cFos protein degradation, Biochim. Biophys. Acta, Gen. Subj., 1850 (4), 750–758.

[12] Hafid, A.F., Utsubo, C.A., Permanasari, A.A., Adianti, M., Tumewu, L., Widyawaruyanti, A., Wahyuningsih, S.P.A., Wahyuni, T.S., Lusida, M.I., Soetjipto., and Hotta, H., 2017, Antiviral activity of the dichloromethane extracts from Artocarpus heterophyllus leaves against hepatitis C virus, Asian Pac. J. Trop. Biomed., 7 (7), 633–639.

[13] Wongkittipong, R., Prat, L., Damronglerd, S., and Gourdon, C., 2004, Solid-liquid extraction of andrographolide from plants - Experimental study, kinetic reaction and model, Sep. Purif. Technol., 40 (2), 147–154.

[14] Majee, C., Gupta, B.K., Mazumder, R., and Chakraborthy, G.S., 2011, HPLC method development and characterization of bio-active molecule isolated from Andrographis paniculata, Int. J. PharmTech Res., 3 (3), 1586–1592.

[15] Kumar, S., Dhanani, T., and Shah, S., 2014, Extraction of three bioactive diterpenoids from Andrographis paniculata: Effect of the extraction techniques on extract composition and quantification of three andrographolides using high-performance liquid chromatography, J. Chromatogr. Sci., 52 (9), 1043–50.

[16] Ahmadi, F., Yawari, E., and Nikbakht, M., 2014, Computational design of an enantioselective molecular imprinted polymer for the solid phase extraction of S-warfarin from plasma, J. Chromatogr. A, 1338, 9–16.

[17] Islam, A.K.M.S., Krishnan, H., Singh, H., and Ahmad, M.N., 2015, A noble molecular imprint polymer biosensor for caffeic acid detection in orthosiphon Stamineus extracts, Jurnal Teknologi, 77 (7), 97–101.

[18] Krishnan, H., Islam, A.K.M.S., Hamzah, Z., and Ahmad, M.N., 2017, Rational computational design for the development of Andrographolide Molecularly Imprinted Polymer, AIP Conf. Proc., 1891 (1), 020083.

[19] Nicholls, I.A., Andersson, H.S., Golker, K., Henschel, H., Karlsson, B.C.G., Olsson, G.D., Rosengren, A.M., Shoravi, S., Suriyanarayanan, S., Wiklander, J.G., and Wikman, S., 2011, Rational design of biomimetic molecularly imprinted materials: Theoretical and computational strategies for guiding nanoscale structured polymer development, Anal. Bioanal. Chem., 400 (6), 1771–1786.

[20] Pardeshi, S., Dhodapkar, R., and Kumar, A., 2014, Molecularly imprinted microspheres and nanoparticles prepared using precipitation polymerisation method for selective extraction of gallic acid from Emblica officinalis, Food Chem., 146, 385–393.

[21] Pardeshi, S., and Singh, S. K., 2016, Precipitation polymerization: a versatile tool for preparing molecularly imprinted polymer beads for chromatography applications, RSC Adv., 6 (28), 23525–23536.

[22] Tahir, I., Ahmad, M.N., Islam, A.K.M.S., and Arbain, D., 2012, Virtual searching of dummy template for Sinensetin based on 2D molecular similarity using Chemdb tool, Indones. J. Chem., 12 (3), 217–222.

[23] Saputra, A., Wijaya, K., Armunanto, R., Tania, L., and Tahir, I., 2017, Determination of effective functional monomer and solvent for R(+)-cathinone imprinted polymer using density functional theory and molecular dynamics simulation approaches, Indones. J. Chem., 17 (3), 516–522.

[24] Yin, X., Liu, Q., Jiang, Y., and Luo, Y., 2011, Development of andrographolide molecularly imprinted polymer for solid-phase extraction, Spectrochim. Acta, Part A, 79 (1), 191–196.

[25] Tahir, I., Wijaya, K., Islam, S., and Ahmad, M.N., 2014, Computer aided design of molecular imprinted polymer for selective recognition of capsaicin, Indones. J. Chem., 14 (1), 85–93.

[26] Liu, W., Qin, L., Yang, Y., Liu, X., and Xu, B., 2014, Synthesis and characterization of dibenzothiophene imprinted polymers on the surface of iniferter-modified carbon microspheres, Mater. Chem. Phys., 148 (3), 605-613.

[27] Saad, E.M., Madbouly, A., Ayoub, N., and El Nashar, R.M., 2015, Preparation and application of molecularly imprinted polymer for isolation of chicoric acid from Chicorium intybus L. medicinal plant, Anal. Chim. Acta, 877, 80–9.

[28] Pardeshi, S., Patrikar, R., Dhodapkar, R., and Kumar, A., 2012, Validation of computational approach to study monomer selectivity toward the template gallic acid for rational molecularly imprinted polymer design, J. Mol. Model., 18 (11), 4797–4810.

[29] Liang, D., Wang, Y., Li, S., Li, Y., Zhang, M., Li, Y., Tian, W., Liu, J., Tang, S., Li, B., and Jin, R., 2016, Study on dicyandiamide-imprinted polymers with computer-aided design, Int. J. Mol. Sci., 17 (11), 1750.

[30] Nezhadali, A., Senobari, S., and Mojarrab, M., 2016, 1,4-Dihydroxyanthraquinone electrochemical sensor based on molecularly imprinted polymer using multi-walled carbon nanotubes and multivariate optimization method, Talanta, 146, 525–532.

[31] Mancin, F., 2017, The strength of the interaction, http://www.chimica.unipd.it/fabrizio.mancin/pubblica/Suprachem/II%20lezione%20Mancin.pdf, 1–32.

[32] Khan, MS, Wate, PS, dan Krupadam, RJ, 2012, skrining kombinatorial prekursor polimer untuk persiapan polimer dicetak benzo-pirena: Pendekatan komputasi ab initio, J. Mol. Model. , 18 (5), 1969–1981.



DOI: https://doi.org/10.22146/ijc.34369

Article Metrics

Abstract views : 6452 | views : 3957


Copyright (c) 2019 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.