Poly(Lactic Acid) (PLA)/Acrylonitrile Butadiene Styrene (ABS) with Graphene Nanoplatelet (GNP) Nanocomposites

https://doi.org/10.22146/ijc.40880

Mohd Bijarimi(1*), Noor Shahadah(2), Azizan Ramli(3), Said Nurdin(4), Waleed Alhadadi(5), Muhammad Zakir Muzakkar(6), Jamiluddin Jaafar(7)

(1) Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang,Lebuhraya Tun Razak 26300, Gambang, Pahang, Malaysia
(2) Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang,Lebuhraya Tun Razak 26300, Gambang, Pahang, Malaysia
(3) Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang,Lebuhraya Tun Razak 26300, Gambang, Pahang, Malaysia
(4) Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang,Lebuhraya Tun Razak 26300, Gambang, Pahang, Malaysia
(5) Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang,Lebuhraya Tun Razak 26300, Gambang, Pahang, Malaysia
(6) Department of Chemistry, Faculty of Mathematics and Science, Universitas Haluoleo, Kendari 93232, Indonesia
(7) Faculty of Mechanical Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak 26300, Gambang, Pahang, Malaysia
(*) Corresponding Author

Abstract


A melt blending of poly(lactic acid) (PLA)/acrylonitrile-butadiene-styrene (ABS) with 30:70 PLA:ABS was prepared by a twin screw extruder with a die of 25 mm width and 0.5 mm thickness with various loadings of graphene (0–1.0 wt.%). The PLA/ABS blends were evaluated by mechanical, morphology, thermal and interaction of the components of the blend. Results show the incorporation of graphene nanoplatelet (GNP) improved the tensile and modulus properties. Nevertheless, it was observed that at higher GNP loadings i.e. 0.6–1.0 wt.%, both tensile and modulus properties showed a decreasing trend. It was also found that the thermal stability for the blend slightly improved when graphene presence in the blend.

Keywords


ABS; PLA; melt blending; nanocomposites

Full Text:

Full Text PDF


References

[1] Mat Desa, M.S.Z., Hassan, A., Arsad, A., and Mohamad, N.N.B., 2014, Mechanical properties of poly(lactic acid)/multiwalled carbon nanotubes nanocomposites, Mater. Res. Innovations, 18 (Suppl 6),14–17.

[2] Bijarimi, M., Ahmad, S., and Alam, A.K.M.M., 2017, Toughening effect of liquid natural rubber on the morphology and thermo-mechanical properties of the poly(lactic acid) ternary blend, Polym. Bull., 74 (8), 3301–3317.

[3] Wu, N., Zhang, H., and Fu, G., 2017, Super-tough poly(lactide) thermoplastic vulcanizates based on modified natural rubber, ACS Sustainable Chem. Eng., 5 (1), 78–84.

[4] Bijarimi, M., Ahmad, S., and Rasid, R., 2013, Mechanical, thermal and morphological properties of poly(lactic acid)/natural rubber nanocomposites, J. Reinf. Plast. Compos., 32 (21), 1656–1667.

[5] Garcia, A., Berthelot, T., Viel, P., Mesnage, A., Jégou, P., Nekelson, F., Roussel, S, and Palacin, S., 2010, ABS polymer electroless plating through a one-step poly(acrylic acid) covalent grafting, ACS Appl. Mater. Interfaces, 2 (4), 1177–1183.

[6] Olivera, S., Muralidhara, HB., Venkatesh, K., Gopalakrishna, K., and Vivek, C.S., 2016, Plating on acrylonitrile–butadiene–styrene (ABS) plastic: A review, J. Mater. Sci., 51 (8), 3657–3674.

[7] Hamad, K., Kaseem, M., and Deri, F., 2012, Poly(lactic acid)/low density polyethylene polymer blends: Preparation and characterization, Asia-Pac. J. Chem. Eng., 7, S310–S316.

[8] Haniff, M., Bijarimi, M., Zaidi, M.S., and Sahrim, A., 2018, Preparation and characterization of poly(lactic acid) (PLA)/polyoxymethylene (POM) blends, Mater. Sci. Forum, 917, 3–6.

[9] Alam, A.K.M.M., Beg, M.D.H., Yunus, R.M., Bijarimi, M., Mina, M.F., Maria, K.H., and Mieno, T., 2018, Modification of structure and properties of well-dispersed dendrimer coated multi-walled carbon nanotube reinforced polyester nanocomposites, Polym. Test., 68, 116–125.

[10] Mat Desa, M.S.Z., Hassan, A., Arsad, A., and Mohamad, N.N.B., 2016, Influence of rubber content on mechanical, thermal, and morphological behavior of natural rubber toughened poly(lactic acid)–multiwalled carbon nanotube nanocomposites, J. Appl. Polym. Sci., 133 (48), 44344.

[11] Weng, Z., Wang, J., Senthil, T., and Wu, L., 2016, Mechanical and thermal properties of ABS/montmorillonite nanocomposites for fused deposition modeling 3D printing, Mater. Des., 102, 276–283.

[12] Bouakaz, B.S., Habi, A., Grohens, Y., and Pillin, I., 2017, Organomontmorillonite/graphene-PLA/PCL nanofilled blends: New strategy to enhance the functional properties of PLA/PCL blend, Appl. Clay Sci., 139, 81–91.

[13] Young, R.J., Liu, M., Kinloch, I.A., Li, S., Zhao, X., Vallés, C., and Papageorgiou, D.G., 2018, The mechanics of reinforcement of polymers by graphene nanoplatelets, Compos. Sci. Technol, 154, 110–116.

[14] Li, Z., Chu, J., Yang, C., Hao, S., Bissett, M.A., Kinloch, I.A., and Young, R.J., 2018, Effect of functional groups on the agglomeration of graphene in nanocomposites, Compos. Sci. Technol., 163, 116–122.

[15] Papageorgiou, D.G., Kinloch, I.A., and Young, R.J., 2017, Mechanical properties of graphene and graphene-based nanocomposites, Prog. Mater. Sci., 90, 75–127.

[16] Hamid, F.A., Salleh, F.M., Mohamed, N.S., and Adnan, S.B.R.S., 2017, Effect of graphene content on the structure and conductivity of cellulose/graphene composite, Sains Malays., 46 (7),1025–1031.

[17] Norhakim, N., Ahmad, S., Chia, C.H., and Huang, N.M., 2014, Mechanical and thermal properties of graphene oxide filled epoxy nanocomposites, Sains Malays., 43 (4), 603–609.

[18] Abidin, H.E.Z., Hamzah, A.A., and Majlis, B.Y., 2017, Pencirian pertumbuhan lapisan nano grafin di atas elektrod antara digit superkapasitor MEMS, Sains Malays., 46 (7), 1061–1067.

[19] Liang, J., Huang, Yi., Zhang, L., Wang, Y., Ma, Y., Guo, TG., and Chen, Y., 2009, Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites, Adv. Funct. Mater., 19 (14), 2297–2302.

[20] Kuilla, T., Bhadra, S., Yao, D., Kim, N.H., Bose, S., and Lee, J.H., 2010, Recent advances in graphene based polymer composites, Prog. Polym. Sci., 35 (11), 1350–1375.

[21] Bouakaz, B.S., Pillin, I., Habi, A., and Grohens, Y., 2015, Synergy between fillers in organomontmorillonite/graphene–PLA nanocomposites, Appl. Clay Sci., 116-117, 69–77.

[22] Li, C., Li, Y., She, X., Vongsvivut, J., Li, J., She, F., Gao, W., and Kong, L., 2015, Reinforcement and deformation behaviors of polyvinyl alcohol/graphene/montmorillonite clay composites, Compos. Sci. Technol., (118), 1–8.

[23] Vadori, R., Misra, M., and Mohanty, A.K., 2016, Sustainable biobased blends from the reactive extrusion of polylactide and acrylonitrile butadiene styrene, J. Appl. Polym. Sci., 133 (45), 43771.



DOI: https://doi.org/10.22146/ijc.40880

Article Metrics

Abstract views : 3622 | views : 3336


Copyright (c) 2019 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.