Synthesis, Characterization, and Stability Evaluation of β-Carotene Encapsulated in Starch-Chitosan/Tripolyphosphate Matrices
Agnes Dyah Novitasari Lestari(1), Dwi Siswanta(2), Ronny Martien(3), Mudasir Mudasir(4*)
(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Papua, Jl. Gunung Salju, Amban, Manokwari 98314, Indonesia
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(3) Department of Pharmaceutics, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara, Yogyakarta 55281 Indonesia
(4) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(*) Corresponding Author
Abstract
Keywords
Full Text:
Full Text PDFReferences
[1] Chávarri, M., Marañón, I., and Villarán, M.C., 2012, “Encapsulation technology to protect probiotic bacteria” in Probiotics, Eds. Rigobelo, E.C., IntechOpen, Rijeka, 501–540.
[2] Nedovic, V., Kalusevic, A., Manojlovic, V., Levic, S., and Bugarski, B., 2011, An overview of encapsulation technologies for food applications, Procedia Food Sci., 1, 1806–1815.
[3] Joye, I.J., and McClements, D.J., 2014, Biopolymer-based nanoparticles and microparticles: Fabrication, characterization, and application, Curr. Opin. Colloid Interface Sci., 19 (5), 417–427.
[4] Gul, K., Tak, A., Singh, A.K., Singh, P., Yousuf, B., and Wani, A.A., 2015, Chemistry, encapsulation, and health benefits of β-carotene - A review, Cogent Food Agric., 1 (1), 1018696.
[5] Yuan, Y., Gao, Y., Zhao, J., and Mao, L., 2008, Characterization and stability evaluation of β-carotene nanoemulsions prepared by high pressure homogenization under various emulsifying conditions, Food Res. Int., 41 (1), 61–68.
[6] Gu, L., Su, Y., Zhang, M., Chang, C., Li, J., McClements, D.J., and Yang, Y., 2017, Protection of β-carotene from chemical degradation in emulsion-based delivery systems using antioxidant interfacial complexes: Catechin-egg white protein conjugates, Food Res. Int., 96, 84–93.
[7] Yang, J., Han, S., Zheng, H., Dong, H., and Liu, J., 2015, Preparation and application of micro/nanoparticles based on natural polysaccharides, Carbohydr. Polym., 123, 53–66.
[8] Fathi, M., Martín, Á., and McClements, D.J., 2014, Nanoencapsulation of food ingredients using carbohydrate based delivery systems, Trends Food Sci. Technol., 39 (1), 18–39.
[9] Fouladi, E., and Nafchi, A.M., 2014, Effects of acid-hydrolysis and hydroxypropylation on functional properties of sago starch, Int. J. Biol. Macromol., 68, 251–257.
[10] Loksuwan, J., 2007, Characteristics of microencapsulated β-carotene formed by spray drying with modified tapioca starch, native tapioca starch and maltodextrin, Food Hydrocolloids, 21 (5-6), 928–935.
[11] Spada, J.C., Noreña, C.P.Z., Marczak, L.D.F., and Tessaro, I.C., 2012, Study on the stability of β-carotene microencapsulated with pinhão (Araucaria angustifolia seeds) starch, Carbohydr. Polym., 89 (4), 1166–1173.
[12] Subramanian, S.B., Francis, A.P., and Devasena, T., 2014, Chitosan-starch nanocomposite particles as a drug carrier for the delivery of bis-desmethoxy curcumin analog, Carbohydr. Polym., 114, 170–178.
[13] Perez, J.J., and Francois, N.J., 2016, Chitosan-starch beads prepared by ionotropic gelation as potential matrices for controlled release of fertilizers, Carbohydr. Polym., 148, 134–142.
[14] Peng, H., Xiong, H., Li, J., Xie, M., Liu, Y., Bai, C., and Chen, L., 2010, Vanillin cross-linked chitosan microspheres for controlled release of resveratrol, Food Chem., 121 (1), 23–28.
[15] de Vos, P., Faas, M.M., Spasojevic, M., and Sikkema, J., 2010, Encapsulation for preservation of functionality and targeted delivery of bioactive food components, Int. Dairy J., 20 (4), 292–302.
[16] Raguzzoni, J.C., Delgadillo, I., and Lopes da Silva, J.A., 2016, Influence of a cationic polysaccharide on starch functionality, Carbohydr. Polym., 150, 369–377.
[17] Bajer, D., and Kaczmarek, H., 2010, Study of the influence OV UV radiation on biodegradable blends based on chitosan and starch, Prog. Chem. Appl. Chitin Deriv., 15, 17–24.
[18] Lawal, O.S., and Adebowale, K.O., 2005, Physicochemical characteristics and thermal properties of chemically modified jack bean (Canavalia ensiformis) starch, Carbohydr. Polym., 60 (3), 331–341.
[19] Lestari, A.D.N., Mudasir, Siswanta, D., and Martien, R., 2018, Preliminary study on microprecipitation of β-carotene in starch/chitosan/TPP (tripolyphosphate) matrices: Effects of weight ratio of starch/chitosan, AIP Conf. Proc., 2049, 020045.
[20] Rampino, A., Borgogna, M., Bellich, B., Blasi, P., Virgilio, F., and Cesàro, A., 2016, Chitosan-pectin hybrid nanoparticles prepared by coating and blending techniques, Eur. J. Pharm. Sci., 84, 37–45.
[21] Kim, J.Y., and Huber, K.C., 2016, Preparation and characterization of corn starch-β-carotene composites, Carbohydr. Polym., 136, 394–401.
[22] Rutz, J.K., Borges, C.D., Zambiazi, R.C., da Rosa, C.G., and da Silva, M.M., 2016, Elaboration of microparticles of carotenoids from natural and synthetic sources for applications in food, Food Chem., 202, 324–333.
[23] Chu, B.S., Ichikawa, S., Kanafusa, S., and Nakajima, M., 2007, Preparation and characterization of β-carotene nanodispersions prepared by solvent displacement technique, J. Agric. Food Chem., 55 (16), 6754–6760.
[24] Ferranti, V., Marchais, H., Chabenat, C., Orecchioni, A.M., and Lafont, O., 1999, Primidone-loaded poly-ε-caprolactone nanocapsules: Incorporation efficiency and in vitro release profiles, Int. J. Pharm., 193 (1), 107–111.
[25] Chen, L., McClements, D.J., Zhang, H., Zhang, Z., Jin, Z., and Tian, Y., 2019, Impact of amylose content on structural changes and oil absorption of fried maize starches, Food Chem., 287, 28–37.
[26] Ulbrich, M., Beresnewa-Seekamp, T., Walther, W., and Flöter, E., 2016, Acid-thinned corn starch-impact of modification parameters on molecular characteristics and functional properties, Starch/Stärke, 68, 399–409.
[27] Hasani, S., Ojagh, S.M., and Ghorbani, M., 2018, Nanoencapsulation of lemon essential oil in Chitosan-Hicap system. Part 1: Study on its physical and structural characteristics, Int. J. Biol. Macromol., 115, 143–151.
[28] Hsin, W.L., Sheng, Y.J., Lin, S.Y., and Tsao, H.K., 2004, Surface tension increment due to solute addition, Phys. Rev. E, 69 (31), 1–8.
[29] Blanchette, F., Messio, L., and Bush, J.W.M., 2009, The influence of surface tension gradients on drop coalescence, Phys. Fluids, 21 (7), 072107.DOI: https://doi.org/10.22146/ijc.50449
Article Metrics
Abstract views : 4171 | views : 3205Copyright (c) 2020 Indonesian Journal of Chemistry
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.
View The Statistics of Indones. J. Chem.