Hydrocracking of Coconut Oil on the NiO/Silica-Rich Zeolite Synthesized Using a Quaternary Ammonium Surfactant
Sriatun Sriatun(1*), Heru Susanto(2), Widayat Widayat(3), Adi Darmawan(4)
(1) Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University
(2) Chemical Engineering Department, Faculty of Engineering, Diponegoro University
(3) Chemical Engineering Department, Faculty of Engineering, Diponegoro University
(4) Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University
(*) Corresponding Author
Abstract
Keywords
Full Text:
Full Text PDFReferences
[1] Esaifan, M., Warr, L.N., Grathoff, G., Meyer, T., Schafmeister, M.T., Kruth, A., and Testrich, H., 2019, Synthesis of hydroxy-sodalite/cancrinite zeolites from calcite-bearing kaolin for the removal of heavy metal ions in aqueous media, Minerals, 9, 484.
[2] Buhl, J.C., 2016, Enhanced methods of crystallization: The crossover synthesis from gel to melt flow - A case study on sodalites, Microporous Mesoporous Mater., 236, 13–20.
[3] Dey, K.P., Ghosh, S., and Naskar, M.K., 2013, Organic template-free synthesis of ZSM-5 zeolite particles using rice husk ash as silica source, Ceram. Int., 39 (2), 2153–2157.
[4] Sriatun, S., Taslimah, T., Cahyo, E.N., and Saputro, F.D., 2017, Sintesis dan karakterisasi zeolit Y, JKSA, 20 (1), 19–24.
[5] Sriatun, S., Taslimah, T., and Suyati, L., 2018, Synthesis of zeolite from sugarcane bagasse ash using cetyltrimethylammonium bromide as structure directing agent, Indones. J. Chem., 18 (1), 159–165.
[6] Wang, L., Lei, H., Bu, Q., Ren, S., Wei, Y., Zhu, L., Zhang, X., Liu, Y., Yadavalli, G., Lee, J., Chen, S., and Tang, J., 2014, Aromatic hydrocarbons production from ex situ catalysis of pyrolysis vapor over Zinc modified ZSM-5 in a packed-bed catalysis coupled with microwave pyrolysis reactor, Fuel, 129, 78–85.
[7] Jo, D., Ryu, T., Park, G.T., Kim, P.S., Kim, C.H., Nam, I.S., and Hong, S.B., 2016, Synthesis of high-silica LTA and UFI zeolites and NH3–SCR performance of their copper-exchanged form, ACS Catal., 6 (4), 2443–2447.
[8] Jiang, N., Shang, R., Heijman, S.G.J., and Rietveld, L.C., 2018, High-silica zeolites for adsorption of organic micro-pollutants in water treatment: A review, Water Res., 144, 145–161.
[9] Gao, Y., Zheng, B., Wu, G., Ma, F., and Liu, C., 2016, Effect of the Si/Al ratio on the performance of hierarchical ZSM-5 zeolites for methanol aromatization, RSC Adv., 6 (87), 83581–83588.
[10] Smirniotis, P.G., and Zhang, W., 1996, Effect of the Si/Al ratio and of the zeolite structure on the performance of dealuminated zeolites for the reforming of hydrocarbon mixtures, Ind. Eng. Chem. Res., 35 (9), 3055–3066.
[11] Shvets, O.V., Kasian, N., Zukal, A., Pinkas, J., and Čejka, J., 2010, The role of template structure and synergism between inorganic and organic structure directing agents in the synthesis of UTL zeolite, Chem. Mater., 22 (11), 3482–3495.
[12] Sriatun, S., Taslimah, T., and Suyati, 2015, Pemanfaatan katalis silika alumina dari bagasse pada pembuatan biodiesel dari minyak goreng sisa pakai, Jurnal Teknologi Industri Pertanian, 25 (1), 35–42.
[13] Abbasov, V.M., Ibrahimov, H.C., Mukhtarova, G.S., and Abdullayev, E., 2016, Acid treated halloysite clay nanotubes as catalyst supports for fuel production by catalytic hydrocracking of heavy crude oil, Fuel, 184, 555–558.
[14] Romero, M.J.A., Pizzi, A., Toscano, G., Busca, G., Bosio, B., and Arato, E., 2016, Deoxygenation of waste cooking oil and non-edible oil for the production of liquid hydrocarbon biofuels, Waste Manage., 47, 62–68.
[15] Vonortas, A., Kubička, D., and Papayannakos, N., 2014, Catalytic co-hydroprocessing of gasoil–palm oil/AVO mixtures over a NiMo/γ-Al2O3 catalyst, Fuel, 116, 49–55.
[16] Hanaoka, T., Miyazawa, T., Shimura, K., and Hirata, S., 2015, Jet fuel synthesis in hydrocracking of Fischer–Tropsch product over Pt-loaded zeolite catalysts prepared using microemulsions, Fuel Process. Technol., 129, 139–146.
[17] Yotsomnuk, P., and Skolpap, W., 2017, Biofuel production from waste virgin coconut oil by hydrocracking over HZSM-5 zeolite, Int. J. Adv. Sci. Eng. Technol., 5 (2), 54–57.
[18] Tanzer, S.E., Posada, J., Geraedts, S., and Ramírez, A., 2019, Lignocellulosic marine biofuel: Technoeconomic and environmental assessment for production in Brazil and Sweden, J. Cleaner Prod., 239, 117845.
[19] Liu, S., Zhu, Q., Guan, Q., He, L., and Li, W., 2015, Bio-aviation fuel production from hydroprocessing castor oil promoted by the nickel-based bifunctional catalysts, Bioresour. Technol., 183, 93–100.
[20] Widiyadi, A., Guspiani, G.A., Riady, J., Andreanto, R., Chaiunnisa, S.D., and Widayat, W., 2018, Preparation and characterization of NiMo/Al2O3 catalyst for hydrocracking processing, E3S Web Conf., 31, 03011.
[21] Eller, Z., Varga, Z., and Hancsók, J., 2016, Advanced production process of jet fuel components from technical grade coconut oil with special hydrocracking, Fuel, 182, 713–720.
[22] Al-Muttaqii, M., Kurniawansyah, F., Prajitno, D.H., and Roesyadi, A., 2019, Bio-kerosene and bio-gasoil from coconut oils via hydrocracking process over Ni-Fe/HZSM-5 catalyst, Bull. Chem. React. Eng. Catal., 14 (2), 309–319.
[23] Widayat, W., Saputro, S.A., Ginting, E.M., Annisa, A.N., and Satriadi, H., 2017, Biofuel production by catalytic cracking method using Zn/HZSM-5 catalyst, ARPN J. Eng. Appl. Sci., 12 (22), 6347–6351.
[24] Boateng, L., Ansong, R., Owusu, W., and Steiner-Asiedu, M., 2016, Coconut oil and palm oil’s role in nutrition, health and national development: A review, Ghana Med. J., 50 (3), 189–196.
[25] Lapari, S.S., Ramli, Z., and Triwahyono, S., 2015, Effect of different templates on the synthesis of mesoporous sodalite, J. Chem., 2015, 272613.
[26] Mofrad, A.M., Schellenberg, P.S., Peixoto, C., Hunt, H.K., and Hammond, K.D., 2020, Calculated infrared and Raman signatures of Ag+, Cd2+, Pb2+, Hg2+, Ca2+, Mg2+, and K+ sodalites, Microporous Mesoporous Mater., 296, 109983.
[27] Song, Q., Shen, J., Yang, Y., Wang, J., Yang, Y., Sun, J., Jiang, B., and Liao, Z., 2020, Effect of temperature on the synthesis of sodalite by crystal transition process, Microporous Mesoporous Mater., 292, 109755.
[28] Sari, M.E.F., Suprapto, S., and Prasetyoko, D., 2018, Direct synthesis of sodalite from kaolin: The influence of alkalinity, Indones. J. Chem., 18 (4), 607–613.
[29] Eterigho-Ikelegbe, O., Bada, S., Daramola, M.O., and Falcon, R., 2020, Synthesis of high purity hydroxy sodalite nanoparticles via pore-plugging hydrothermal method for inorganic membrane development: Effect of synthesis variables on crystallinity, crystal size and morphology, Mater. Today: Proc., In Press, Corrected Proof.
[30] Manique, M.C., Lacerda, L.V., Alves, A.K., and Bergmann, C.P., 2017, Biodiesel production using coal fly ash-derived sodalite as a heterogeneous catalyst, Fuel, 190, 268–273.
[31] Lutz, W., 2014, Zeolite Y: Synthesis, modification, and properties–A case revisited, Adv. Mater. Sci. Eng., 2014, 724248.
[32] Güvenç, E., and Ahunbay, M.G., 2012, Adsorption of methyl tertiary butyl ether and trichloroethylene in MFI-type zeolites, J. Phys. Chem. C, 116 (41), 21836–21843.
[33] Grieco, S.A., and Ramarao, B.V., 2013, Removal of TCEP from aqueous solutions by adsorption with zeolites, Colloids Surf., A, 434, 329–338.
[34] Bolis, V., Busco, C., and Ugliengo, P., 2006, Thermodynamic study of water adsorption in high-silica zeolites, J. Phys. Chem. B, 110 (30), 14849–14859.
[35] Pavlova, A., Trinh, T.T., van Santen, R.A., and Meijer, E.J., 2013, Clarifying the role of sodium in the silica oligomerization reaction, Phys. Chem. Chem. Phys., 15 (4), 1123–1129.
[36] Al-Ani, A., Haslam, J.J.C., Mordvinova, N.E., Lebedev, O.I., Vicente, A., Fernandez, C., and Zholobenko, V., 2019, Synthesis of nanostructured catalysts by surfactant-templating of large-pore zeolites, Nanoscale Adv., 1 (5), 2029–2039.
[37] Cho, K., Na, K., Kim, J., Terasaki, O., and Ryoo, R., 2012, Zeolite synthesis using hierarchical structure-directing surfactants: Retaining porous structure of initial synthesis gel and precursors, Chem. Mater., 24 (14), 2733–2738.
[38] Sotomayor, F.J., Cychosz, K.A., and Thommes, M., 2018, Characterization of micro/mesoporous materials by physisorption: concepts and case studies, Acc. Mater. Surf. Res., 3 (2), 34–50.
[39] Yurdakal, S., Garlisi, C., Özcan, L., Bellardita, M., and Palmisano, G., 2019, “(Photo)catalyst characterization techniques: Adsorption isotherms and BET, SEM, FTIR, UV–Vis, photoluminescence, and electrochemical characterizations” in Heterogeneous Photocatalysis: Relationships with Heterogeneous Catalysis and Perspectives, Eds. Marcì, G., and Palmisano, L., Elsevier, 87–152.
[40] Cychosz, K.A., and Thommes, M., 2018, Progress in the physisorption characterization of nanoporous gas storage materials, Engineering, 4 (4), 559–566.
[41] Goronja, J.M., Janošević-Ležaić, A., Dimitrijević, B.M., Malenović, A., Stanisavljev, D., and Pejić, N., 2016, Determination of critical micelle concentration of cetyltrimethyl-ammonium bromide: Different procedures for analysis of experimental data, Hem. Ind., 70 (4), 485–492.
[42] Steigman, J., Cohen, I., and Spingola, F., 1965, Micelle formation by a long-chain cation surfactant in aqueous solutions of the lower quaternary ammonium bromides, J. Colloid Sci., 20 (7), 732–741.
[43] Vitagliano, V., D'Errico, G., Ortona, O., and Paduano, L., 2001, “Isothermal diffusion and intradiffusion in surfactant solutions” in: Handbook of Surfaces and Interfaces of Materials: Biomolecules, Biointerfaces, and Applications, Eds. Nalwa, H.S., Academic Press, Burlington, US, 545–611.
[44] Goyal, P.S., Dasannacharya, B.A., Kelkar, V.K., Manohar, C., Srinivasa Rao, K., and Valaulikar, B.S., 1991, Shapes and sizes of micelles in CTAB solutions, Physica B, 174 (1-4), 196–199.
[45] Thapa, U., Dey, J., Kumar, S., Hassan, P.A., Aswal, V.K., and Ismail, K., 2013, Tetraalkylammonium ion induced micelle-to-vesicle transition in aqueous sodium dioctylsulfosuccinate solutions, Soft Matter, 9 (47), 11225–11232.
[46] Trisunaryanti, W., Triyono, T., Armunanto, R., Hastuti, L.P., Ristiana, D.D., and Ginting, R.V., 2018, Hydrocracking of α-cellulose using Co, Ni, and Pd supported on mordenite catalysts, Indones. J. Chem., 18 (1), 166–172.
[47] Efiyanti, L., and Trisunaryanti, W., 2014, Hidrorengkah katalitik minyak kulit biji jambu mete (CNSL) menjadi fraksi bensin dan diesel, JPHH, 32 (1), 71–81.
[48] Khan, G.M., Arafat, S.M.Y., Reza, M.N., Razzaque, S.M., and Alam, M., 2010, Linde Type-A zeolite synthesis and effect of crystallization on its surface acidity, Indian J. Chem. Technol., 17, 303–308.
[49] Al Sofy, S.A.A., 2018, Fourier transformation infrared spectroscopic studies of acidity of NaH-13 X zeolites, Al-Nahrain J. Eng. Sci., 21 (3), 428–435.
[50] Barzetti, T., Selli, E., Moscotti, D., and Forni, L., 1996, Pyridine and ammonia as probes for FTIR analysis of solid acid catalysts, J. Chem. Soc., Faraday Trans., 92 (8), 1401–1407.
[51] Emdadi, L., Oh, S.C., Wu, Y., Oliaee, S.N., Diao, Y., Zhu, G., and Liu, D., 2016, The role of external acidity of meso-/microporous zeolites in determining selectivity for acid-catalyzed reactions of benzyl alcohol, J. Catal., 335, 165–174.
[52] Jiao, W., Su, J., Zhou, H., Liu, S., Liu, C., Zhang, L., Wang, Y., and Yang, W., 2020, Dual template synthesis of SAPO-18/34 zeolite intergrowths and their performances in direct conversion of syngas to olefins, Microporous Mesoporous Mater., 306, 110444.
[53] Vichaphund, S., Aht-ong, D., Sricharoenchaikul, V., and Atong, D., 2015, Production of aromatic compounds from catalytic fast pyrolysis of Jatropha residues using metal/HZSM-5 prepared by ion-exchange and impregnation methods, Renewable Energy, 79, 28–37.
[54] Socci, J., Saraeian, A., Stefanidis, S.D., Banks, S.W., Shanks, B.H., Bridgwater, T., 2019, The role of catalyst acidity and shape selectivity on products from the catalytic fast pyrolysis of beech wood, J. Anal. Appl. Pyrolysis, In Press, Corrected Proof.
[55] Li, T., Cheng, J., Huang, R., Yang, W., Zhou, J., and Cen, K., 2016, Hydrocracking of palm oil to jet biofuel over different zeolites, Int. J. Hydrogen Energy, 41 (47), 21883–21887.
[56] Xu, W., Chen, B., Jiang, X., Xu, F., Chen, X., Chen, L., Wu, J., Fu, M., and Ye, D., 2020, Effect of calcium addition in plasma catalysis for toluene removal by Ni/ZSM-5: Acidity/basicity, catalytic activity and reaction mechanism, J. Hazard. Mater., 387, 122004.
DOI: https://doi.org/10.22146/ijc.55522
Article Metrics
Abstract views : 3765 | views : 3062Copyright (c) 2020 Indonesian Journal of Chemistry
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.
View The Statistics of Indones. J. Chem.