Total Mercury (THg) Concentration in Indian Scad (Decapterus russelli) and Torpedo Scad (Megalaspis cordyla) from Southern Waters of Binuangeun, Banten

https://doi.org/10.22146/ijc.56967

Suratno Suratno(1*), Zahriza Purnadayanti(2), Hilda Novianty(3), Selvia Oktaviyani(4)

(1) Research Division for Natural Product Technology, Indonesian Institute of Sciences, Jl. Jogja-Wonosari Km 31.5, Gading, Yogyakarta 55861, Indonesia
(2) Department of Fisheries and Marine Science, Brawijaya University, Jl. Veteran, Ketawanggede, Malang 65145, Indonesia
(3) Research Division for Natural Product Technology, Indonesian Institute of Sciences, Jl. Jogja-Wonosari Km 31.5, Gading, Yogyakarta 55861, Indonesia
(4) Research Center for Oceanography, Indonesian Institute of Sciences, Pasir Putih I, Ancol Timur, Jakarta 14430, Indonesia
(*) Corresponding Author

Abstract


The high level of fish consumption was the main factor in the vulnerability of Hg exposure to the human body. The preliminary information of the total mercury (THg) concentration of Indian scad (Decapterus russelli) and Torpedo scad (Megalaspis cordyla) from Binuangeun fish auction in Lebak, Banten, Indonesia, was presented in this research. The objective of this research was to understand the distribution of THg in each organ of D. russelli (muscle, gut tissues, gonad, and eggs) and M. cordyla (muscle, liver, and gut contents). The results showed that THg in all samples were below the National Regulation limit from the National Agency of Drug and Food in mg/kg ww. THg gonad from D. russelli was showed highly significant (P < 0.01) lower compare THg in muscle, gut tissues, and eggs. Pearson’s correlation from THg in each organ of D. russelli compare to total weight and total length showed that concentration of THg in gonad highly significantly (p < 0.01) correlated with total body weight (r2 = 0.97) and total length (r2 = 0.96). M. cordyla was showed no correlation of THg in muscle compare to total length and total weight. The present study showed that D. russelli could accumulate higher mercury compare to M. cordyla and need caution while consuming this fish.


Keywords


Decapterus russelli; Megalaspis cordyla; total mercury concentration

Full Text:

Full Text PDF


References

[1] Lim, T.O., Ding, L.M., Suleiman, A.B., Fatimah, S., Siti, S., Tahir, A., and Maimunah, A.H., 2000, Distribution of body weight, height and body mass index in a national sample of Malaysian adults, Med. J. Malays., 55 (1), 108–128.

[2] Stergiou, K.I., and Karpouzi, V.S., 2002, Feeding habits and trophic levels of Mediterranean fish, Rev. Fish Biol. Fish., 11 (3), 217–254.

[3] Reinfelder, J.R., Fisher, N.S., Luoma, S.N., Nichols, J.W., and Wang, W.X., 1998, Trace element trophic transfer in aquatic organisms: A critique of the kinetic model approach, Sci. Total Environ., 219 (2-3), 117–135.

[4] Mahaffey, K.R., 2004, Fish and shellfish as dietary sources of methylmercury and the ω-3 fatty acids, eicosahexanoic acid, and docosahexaenoic acid: Risks and benefits, Environ. Res., 95 (3), 414–428.

[5] Kershaw, T.G., Clarkson, T.W., and Dhahir, P.H., 1980, The relationship between blood levels and a dose of methylmercury in man, Arch. Environ. Health, 35 (1), 28–36.

[6] Maycock, B., and Benford, D., 2007, Risk assessment of dietary exposure to methylmercury in fish in the UK, Hum. Exp. Toxicol., 26 (3), 185–190.

[7] BPOM, 2018, Batas Maksimum cemaran logam berat dalam pangan olahan, Badan Pengawas Obat dan Makanan Republik Indonesia No. 5, Jakarta, 1–15.

[8] Codex Alimentarius, 2016, General standard for contaminants and toxin in food and feed, CODEX STAND 193-1995, 1–65.

[9] SNI, 2016, Cara uji Kimia – Bagian 6: Penentuan kadar logam berat merkuri (Hg) pada produk perikanan, SNI-01-2354.6, Badan Standardisasi Nasional-BSN, Jakarta, 1–15.

[10] SNI, 2006, Cara uji Kimia – Bagian 2: Penentuan kadar air pada produk perikanan, SNI-01-2354.2, Badan Standardisasi Nasional-BSN, Jakarta, 1–12.

[11] USEPA, 1998, Method 7473: Mercury in solids and solution by thermal decomposition, amalgamation, and atomic absorption spectrophotometry, https://www.epa.gov/sites/production/files/2015-07/documents/epa-7473.pdf.

[12] Pralampita, W.A., and Chodriyah, U., 2010, Aspek biologi reproduksi ikan laying (Decapterus russelli) dan ikan banyar (Rastrelinger kanagurta) yang didaratkan di Rembang, Jawa Tengah, Bawal Widya Riset Perikanan Tangkap, 3 (1), 17–23.

[13] Rahmayani, 2016, Biologi Reproduksi Ikan Tetengkek Megalaspis cordyla (Linnaeus, 1758) di Perairan Selat Sunda, Undergraduate Thesis, Institut Pertanian Bogor, Indonesia.

[14] Froese, R., and Pauly, D., 2019, FishBase, World Wide Web electronic publication, www.fishbase.org.

[15] Monperrus, M., Pécheyran, C., and Bolliet, V., 2020, Imaging differential mercury species bioaccumulation in glass eels using isotopic tracers and laser ablation inductively coupled plasma mass spectrometry, Appl. Sci., 10 (7), 2463.

[16] Bridges, C.C., and Zalups, R.K., 2010, Transport of inorganic mercury and methylmercury in target tissues and organs, J. Toxicol. Environ. Health Part B, 13 (5), 385–410.

[17] Mela, M., Neto, F.F., Yamamoto, F.Y., Almeida, R., Grötzner, S.R., Ventura, D.F., and de Oliveira Ribeiro, C.A., 2013, Mercury distribution in target organs and biochemical responses after sub-chronic and trophic exposure to Neotropical fish Hoplias malabaricus, Fish Physiol. Biochem., 40 (1), 245–256.

[18] Bridges, K.N., Soulen, B.K., Overturf, C.L., and Roberts, A.P., 2016, Embryotoxicity of maternally transferred methylmercury to fathead minnows (Pimephales promelas), Environ. Toxicol. Chem., 35 (6), 1436–1441.

[19] Ahmad, N.I., Mohd Noh, M.F., Wan Mahiyuddin, W.R., Jaafar, H., Ishak, I., Wan Azmi, W.N.F., Veloo, Y., and Hairi, M.H., 2015, Mercury levels of marine fish commonly consumed in Peninsular Malaysia, Environ. Sci. Pollut. Res., 22 (5), 3672–3686.

[20] Anual, Z.F., Maher, W., Krikowa, F., Hakim, L., Ahmad, N.I., and Foster, S., 2018, Mercury and risk assessment from consumption of crustaceans, cephalopods, and fish from West Peninsular Malaysia, Microchem. J., 140, 214–221.

[21] Burger, J., Gaines, K.F., Boring, C.S., Stephens, W.L., Snodgrass, J., and Gochfeld, M., 2001, Mercury and selenium in fish from the Savannah River: Species, trophic level, and locational differences, Environ. Res., 87 (2), 108–118.

[22] Al-Majed, N.B., and Preston, M.R., 2000, Factors influencing the total mercury and methyl mercury in the hair of the fishermen of Kuwait, Environ. Pollut., 109 (2), 239–250.

[23] Kinghorn, A., Solomon, P., and Chan, H.M., 2007, Temporal and spatial trends of mercury in fish collected in the English–Wabigoon river system in Ontario, Canada, Sci. Total Environ., 372 (2-3), 615–623.

[24] Saei-Dehkordi, S.S., Fallah, A.A., and Nematollahi, A., 2010, Arsenic and mercury in commercially valuable fish species from the Persian Gulf: Influence of season and habitat, Food Chem. Toxicol., 48 (10), 2945–2950.

[25] Eagle-Smith, C.A., Suchanek, T.H., Colwell, A.E., and Anderson, N.L., 2008, Mercury trophic transfer in a eutrophic lake: The importance of habitat-specific foraging, Ecol. Appl., 18 (Sp8), A196–A212.

[26] Smith-Vaniz, W.F., 1999, “Carangidae. Jacks and scads (also trevallies, queenfishes, runners, amberjacks, pilotfishes, pampanos, etc)” in FAO Species Identification Guide for Fishery Purposes, the Living Marine Resources of the Western Central Pacific, Vol. 4. Bony Fishes Part 2 (Mugilidae to Carangidae), Eds. Carpenter, K.E., and Niem, V.H., Food and Agriculture Organization of the United Nations, Rome, 2659–2756.

[27] Al Sakaff, H., and Esseen, M., 1999, Occurrence and distribution of fish species off Yemen (Guld of Aden and Arabian Sea), Naga, 22 (1), 43–47.

[28] Pauly, D., Cabanban, A., and Torres, Jr., F.S.B., 1996, “Fishery biology of 40 trawl-caught teleost of western Indonesia” in Baseline Studies of Biodiversity: The Fish Resource of Western Indonesia, Eds. Pauly, D., and Martusubroto, P., ICLARM, Manila, Philippines, 135–216.

[29] Gochfeld, M., Burger, J., Jeitner, C., Donio, M., and Taryn, P., 2012, Seasonal, locational and size variations in mercury and selenium levels in striped bass (Morone saxatilis) from New Jersey, Environ. Res., 112, 8–19.

[30] Agah, H., Leermakers, M., Elskens, M., Fatemi, S.M.R., and Baeyens, W., 2007, Total mercury and methyl mercury concentrations in fish from the Persian Gulf and the Caspian Sea, Water Air Soil Pollut., 181 (1), 95–105.

[31] Astani, E., Vahedpour, M., and Babaei, H., 2016, Organic and total mercury concentration in fish muscle and thermodynamic study of organic mercury extraction in fish protein, Ecopersia, 4 (3), 1517–1526.

[32] Paundanan, M., Riani, E., and Anwar, S., 2015, Kontaminasi logam berat merkuri (Hg) dan timbal (Pb) pada air, sedimen dan ikan selar tetengkek (Megalaspis cordyla L) di teluk Palu, Sulawesi Tengah, JPSL, 5 (1), 161–168.

[33] Seixas, T.G., Moreira, I., Malm, O., and Kehrig, H.A., 2013, Ecological and biological determinants of methylmercury accumulation in tropical coastal fish, Environ. Sci. Pollut. Res., 20 (2), 1142–1150.

[34] Horvat, M., Degenek, N., Lipej, L., Tratnik, J.S., and Faganeli, J., 2014, Trophic transfer and accumulation of mercury in ray species in coastal waters affected by historic mercury mining (Gulf of Trieste, northern Adriatic Sea), Environ. Sci. Pollut. Res., 21 (6), 4163–4176.



DOI: https://doi.org/10.22146/ijc.56967

Article Metrics

Abstract views : 2734 | views : 2458


Copyright (c) 2020 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.