Preparation of Biodegradable and Low-Cost Lignin-Based PVOH Carbon Fibers Prepared by Electrospinning
Amir Hamzah Siregar(1), Aditia Warman(2), Mahyuni Harahap(3), Grace Nainggolan(4), Dellyansyah Dellyansyah(5), Saharman Gea(6*)
(1) Cellulosic and Functional Materials Research Centre, Universitas Sumatera Utara, Jl. Bioteknologi No. 1, Medan 20155, Indonesia Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Jl. Bioteknologi No.1, Medan 20155, Indonesia
(2) Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Jl. Bioteknologi No. 1, Medan 20155, Indonesia
(3) Cellulosic and Functional Materials Research Centre, Universitas Sumatera Utara, Jl. Bioteknologi No. 1, Medan 20155, Indonesia Department of Chemistry, Universitas Sari Mutiara Indonesia, Jl. Kapten Muslim, Medan 20124, Indonesia
(4) Cellulosic and Functional Materials Research Centre, Universitas Sumatera Utara, Jl. Bioteknologi No. 1, Medan 20155, Indonesia Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Jl. Bioteknologi No.1, Medan 20155, Indonesia
(5) Cellulosic and Functional Materials Research Centre, Universitas Sumatera Utara, Jl. Bioteknologi No. 1, Medan 20155, Indonesia Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Jl. Bioteknologi No.1, Medan 20155, Indonesia
(6) Cellulosic and Functional Materials Research Centre, Universitas Sumatera Utara, Jl. Bioteknologi No. 1, Medan 20155, Indonesia Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Jl. Bioteknologi No.1, Medan 20155, Indonesia
(*) Corresponding Author
Abstract
A polyvinyl alcohol (PVOH)/lignin nanofiber was prepared by the electrospinning method as a precursor for biodegradable and low-cost carbon fibers. PVOH 15% was dissolved in water, and various concentration of lignin (5, 10, 15, 20, and 25%) was added. The presence of lignin in PVOH solution increased the viscosity and conductivity. From SEM analysis, PVOH solution produced smooth fiber, whereas the addition of lignin produced fibers in bead forms. The presence of lignin above 20% in PVOH did not produce spun-fiber. FTIR analysis confirmed that lignin was able to form hydrogen bonds with PVOH. TGA analysis showed that PVOH/lignin nanofibers had the highest residual mass, i.e., 40% at 600 °C. The morphology of the carbon fibers showed flake forms with many pores and had 58.07% carbon content.
Keywords
Full Text:
Full Text PDFReferences
[1] Zhang, J., Chevali, V.S., Wang, H., and Wang, C.H., 2020, Current status of carbon fibre and carbon fibre composites recycling, Composites, Part B, 193, 108053.
[2] Al-Saleh, M.H., and Sundararaj, U., 2009, A review of vapor grown carbon nanofiber/polymer conductive composites, Carbon, 47 (1), 2–22.
[3] Ding, R., Wu, H., Thunga, M., Bowler, N., and Kessler, M.R., 2016, Processing and characterization of low-cost electrospun carbon fibers from organosolv lignin/polyacrylonitrile blends, Carbon, 100, 126–136.
[4] Gea, S., Siregar, A.H., Zaidar, E., Harahap, M., Indrawan, D.P., and Perangin-Angin, Y.A., 2020, Isolation and characterisation of cellulose nanofibre and lignin from oil palm empty fruit bunches, Materials, 13 (10), 2290.
[5] Baker, D.A., and Rials, T.G., 2013, Recent advances in low-cost carbon fiber manufacture from lignin, J. Appl. Polym. Sci., 130 (2), 713–728.
[6] Chio, C., Sain, M., and Qin, W., 2019, Lignin utilization: A review of lignin depolymerization from various aspects, Renewable Sustainable Energy Rev., 107, 232–249.
[7] Harahap, M., Hararak, B., Khan, I., Pandita, S., and Gea, S., 2019, Wet-spinning of cellulose acetate reinforced with acetylated nano-crystalline cellulose as carbon fibre precursors, IOP Conf. Ser.: Mater. Sci. Eng., 553, 012038.
[8] Cao, Q., Zhang, Y., Chen, J., Zhu, M., Yang, C., Guo, H., Song, Y., Li, Y., and Zhou, J., 2020, Electrospun biomass based carbon nanofibers as high-performance supercapacitors, Ind. Crops Prod., 148, 112181.
[9] Salas, C., Ago, M., Lucia, L.A., and Rojas, O.J., 2014, Synthesis of soy protein-lignin nanofibers by solution electrospinning, React. Funct. Polym., 85, 221–227.
[10] Chio, C., Sain, M., and Qin, W., 2019, Lignin utilization: A review of lignin depolymerization from various aspects, Renewable Sustainable Energy Rev., 107, 232–249.
[11] Ko, F.K., Goudarzi, A., Lin, L.T., Li, Y., and Kadla, J.F., 2016, “Lignin-Based Composite Carbon Nanofibers” in Lignin in Polymer Composites, Norwich, NY, 167–194.
[12] Ilmiati, S., Hafiza, J., Fatriansyah, J.F., Kustiyah, E., and Chalid, M., 2018, Synthesis and characterization of lignin-based polyurethane as a potential compatibilizer, Indones. J. Chem., 18 (3), 390–396.
[13] Trogen, M., Le, N.G., Sawada, S., Guizani, C., Lourençon, T.V., Pitkänen, L., Sixta, H., Shah, R., O’Neill, H., Balakshin, M., Byrne, N., and Hummel, M., 2020, Cellulose-lignin composite fibres as precursors for carbon fibres. Part 1- Manufacturing and properties of precursor fibres, Carbohydr. Polym., 252, 117133.
[14] Poursorkhabi, V., Mohanty, A.K., and Misra, M., 2015, Electrospinning of aqueous lignin/poly(ethylene oxide) complexes, J. Appl. Polym. Sci., 132 (2), 41260.
[15] Misran, E., Wirdjosentono, B., Noor, N.M., Gea, S., Situmorang, S.A., and Harahap, M., 2020, Preparation and characterisation of electrospun composite nanofibre polyvinyl alcohol/nanofibrillated cellulose isolated from oil palm empty fruit bunches, BioResources, 15 (4), 7906–7917.
[16] Fatema, U.K., Uddin, A.J., Uemura, K., and Gotoh, Y., 2011, Fabrication of carbon fibers from electrospun poly(vinyl alcohol) nanofibers, Text. Res. J., 81 (7), 659–672.
[17] Fatimah, I., Sari, T.I., and Anggoro, D., 2020, Effect of concentration and nozzle-collector distance on the morphology of nanofibers, Key Eng. Mater., 860, 315–319.
[18] Ago, M., Okajima, K., Jakes, J.E., Park, S., and Rojas, O.J., 2012, Lignin-based electrospun nanofibers reinforced with cellulose nanocrystals, Biomacromolecules, 13 (3), 918–926.
[19] Lai C., Zhou, Z., Zhang, L., Wang, X., Zhou, Q., Zhao, Y., Wang, Y., Wu, X.F., Zhu, Z., and Fong, H., 2014, Free-standing and mechanically flexible mats consisting of electrospun carbon nanofibers made from a natural product of alkali lignin as binder-free electrodes for high-performance supercapacitors, J. Power Sources, 247, 134–141.
[20] Korbag, I., and Mohamed Saleh, S.., 2016, Studies on the formation of intermolecular interactions and structural characterization of polyvinyl alcohol/lignin film, Int. J. Environ. Stud., 73 (2), 226–235.
[21] Roman, J., Neri, W., Derré, A., and Poulin, P., 2019, Electrospun lignin-based twisted carbon nanofibers for potential microelectrodes applications, Carbon, 145, 556–564.
[22] Rampe, M.J., Setiaji, B., Trisunaryanti, W., and Triyono, T., 2011, Fabrication and characterization of carbon composite from coconut shell carbon, Indones. J. Chem., 11 (2), 124–130.
[23] Ko, H.U., Zhai, L., Park, J.H., Lee, J.Y., Kim, D., and Kim, J., 2018, Poly(vinyl alcohol)–lignin blended resin for cellulose-based composites, J. Appl. Polym. Sci., 135 (34), 46655.
[24] Ago, M., Borghei, M., Haataja, J.S., and Rojas, O.J., 2016, Mesoporous carbon soft-templated from lignin nanofiber networks: Microphase separation boosts supercapacitance in conductive electrodes, RSC Adv., 6 (89), 85802–85810.
[25] Widiyastuti, W., Rois, M.F., Setyawan, H., Machmudah, S., and Anggoro, D., 2020, Carbonization of lignin extracted from liquid waste of coconut coir delignification, Indones. J. Chem., 20 (4), 842–849.
DOI: https://doi.org/10.22146/ijc.66606
Article Metrics
Abstract views : 2245 | views : 1930Copyright (c) 2021 Indonesian Journal of Chemistry
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.
View The Statistics of Indones. J. Chem.