Synthesis, Characterization and Antibacterial Activity Study of Cobalt(II), Nickel(II), Copper(II), Palladium(II), Cadmium(II) and Platinum(IV) Complexes with 4-Amino-5-(3,4,5-trimethoxyphenyl)-4H-1,2,4-triazole-3-thione
Waleed Abbas Jawad(1), Asim Alaa Abd Al-Hussein Balakit(2), Mahmoud Najim Abid Al-Jibouri(3*)
(1) Ministry of Education, Babylon Education Directorate, Hilla-Iraq
(2) College of Pharmacy, University of Babylon, Hilla-Iraq
(3) Mustansiriyah University, College of Science, Department of Chemistry,IRAQ
(*) Corresponding Author
Abstract
Keywords
References
[1] Sugiyarto, K.H., Louise, I.S.Y., and Wilujeng, S.S., 2020, Preparation and powder XRD analysis of tris(2,2’-bipyridine)nickel(II) trifluoroacetate, Indones. J. Chem., 20 (4), 833–841.
[2] Timur, İ., Kocyigit, Ü.M., Dastan, T., Sandal, S., Ceribası, A.O., Taslimi P., Gulcin, İ., Koparir, M., Karatepe, M., and Çiftçi, M., 2019, In vitro cytotoxic and in vivo antitumoral activities of some aminomethyl derivatives of 2,4-dihydro-3H-1,2,4-triazole-3-thiones-Evaluation of their acetylcholinesterase and carbonic anhydrase enzymes inhibition profiles, J. Biochem. Mol. Toxicol., 33 (1), e22239.
[3] Kaproń, B., Łuszczki, J.J., Płazińska, A., Siwek, A., Karcz, T., Gryboś, A., Nowak, G., Makuch-Kocka, A., Walczak, K., Langner, E., Szalast, K., Marciniak, S., Paczkowska, M., Cielecka-Piontek, J., Ciesla, L.M., and Plech, T., 2019, Development of the 1,2,4-triazole-based anticonvulsant drug candidates acting on the voltage-gated sodium channels. Insights from in-vivo, in-vitro, and in-silico studies, Eur. J. Pharm. Sci., 129, 42–57.
[4] Sugiyarto, K.H., Yunita, I., and Goodwin, H.A., 2020, Preparation, electronic properties, and powder-XRD structure analysis of 3,5-Bis(pyridin-2-yl)-H-1,2,4-triazoledichloridocopper(II), Indones. J. Chem., 20 (6), 1422–1429.
[5] Obaid, S.M.H., Sultan, J.S., and Al-Hamdani, A.A.S., 2020, Synthesis, characterization and biological efficacies from some new dinuclear metal complexes for base 3-(3,4-dihydroxy-phenyl)-2-[(2-hydroxy-3-methylperoxybenzylidene)-amino]-2-methyl propionic acid, Indones. J. Chem., 20 (6), 1311–1322.
[6] Rasyda, Y.A., Widowati, M.K., Marliyana, S.D., and and Rahardjo, S.B., 2021, Synthesis, characterization and antibacterial properties of nickel(II) complex with 4-aminoantipyrine ligand, Indones. J. Chem., 21 (2), 391–399.
[7] Idrees, M., Nasare, R.D., and Siddiqui, N.J., 2016, Synthesis of S-phenacylated trisubstituted 1,2,4-triazole incorporated with 5-(benzofuran-2-yl)-1-phenyl-1H-pyrazol-3-yl moiety and their antibacterial screening, Chem. Sin., 7 (4), 28–35.
[8] Özadalı, K., Özkanlı, F., Jain, S., Rao, P.P.N., and Velázquez-Martínez, C.A., 2012, Synthesis and biological evaluation of isoxazolo[4,5-d]pyridazin-4-(5H)-one analogues as potent anti-inflammatory agents, Bioorg. Med. Chem., 20 (9), 2912–2922.
[9] Kanagarajan, V., Thanusu, J., and Gopalakrishnan, M., 2011, Synthesis and in vitro microbiological evaluation of novel 2,4-diaryl-3-azabicyclo[3.3.1]nonan-9,5′-spiro-1′,2′,4′-triazolidine-3′-thiones, Med. Chem. Res., 21 (12), 3965–3972.
[10] Dallavalle, F., Gaccioli, F., Franchi-Gazzola, R., Lanfranchi, M., Marchiò, L., Pellinghelli, M.A., and Tegoni, M., 2002, Synthesis, molecular structure, solution equilibrium, and antiproliferative activity of thioxotriazoline and thioxotriazole complexes of copper(II) and palladium(II), J. Inorg. Biochem., 92 (2), 95–104.
[11] Al-Masoudi, N.A., Abdullah, B.H., Essa, A.H., Loddo, R., and LaColla, P., 2010, Platinum and palladium-triazole complexes as highly potential antitumor agents, Arch. Pharm., 343 (4), 222–227.
[12] Kapri, K.P., Singar, S.B., Khanal, S., and Shakya, B., 2020, Synthesis of Schiff bases of 4-amino-5-(2-hydroxyphenyl)-4H-1,2,4-triazole-3-thiol as potent antimicrobial agents, Amrit Res. J., 1 (1), 29–36.
[13] Devkota, K., Pathak, G., and Shakya, B., 2020, Synthesis and evaluation of Schiff bases of 4-amino-5-(chlorine substituted phenyl)-4H-1,2,4-triazole-3-thione as antimicrobial agents, J. Nepal Chem. Soc., 41 (1), 26–35.
[14] Namratha, B., and Gaonkar, S.L., 2014, 1,2,4-Triazoles: Synthetic strategies and pharmacological profiles, Int. J. Pharm. Pharm. Sci., 6 (8), 73–80.
[15] Bharty, M.K., Bharti, A., Chaurasia, R., Chaudhari, U.K., Kushawaha, S.K., Sonkar, P.K., and Butcher, R.J., 2019, Synthesis and characterization of Mn(II) complexes of 4-phenyl(phenyl-acetyl)-3-thiosemicarbazide, 4-amino-5-phenyl-1,2,4-triazole-3-thiolate, and their application towards electrochemical oxygen reduction reaction, Polyhedron, 173, 114125.
[16] Murti, Y., Agnihotri, R., and Pathak, D., 2011, Synthesis, characterization and pharmacological screening of some substituted 1,2,3- & 1,2,4-triazoles, Am. J. Chem., 1 (2), 42–46.
[17] Majeed A.S., 2010, Synthesis, structure and antibacterial activity of some 2-amino-5-(2-acetyloxyphenyl)-1,3,4-thiadiazole complexes, Al Mustansiriya J. Sci., 21 (5), 195–204.
[18] Yousif, E., Hameed, A., and Ameer, A., 2005, Synthesis and characterization of complexes of some transition metals with 2-amino-5-(4-hexyloxyphenyl)-1,3,4-thiadiazole, J. Al-Nahrain Univ., 8 (1), 9–11.
[19] Narayana, B, and Gajendragad, M., 1997, Complexes of Zn(II), Pd(II), Hg(II), Pb(II), Cu(I),Ag(I), and Ti(I) with 4-amino-5-merccapto-3-(o-tolyloxymethyl)-1,2,4-troazol, Turk. J. Chem., 21 (1), 71–76.
[20] Sliverstein, R., Webster, F.X., and Kiemle, D.J., 2005, Spectrometric Identification of Organic Compounds, 7th Ed., John Wiley & Sons, Hoboken, New York.
[21] Flifel, I., and Kadhim, S., 2012, Synthesis and characterization of 1,3,4-oxadiazole derivatives with some new transition metal complexes, J. Kerbala Univ., 10 (3), 197–209.
[22] Abd El-Razek, S.E., El-Gamasy, S.M., Hassan, M., Abdel-Aziz, M.S., and Nasr, S.M., 2020, Transition metal complexes of a multidentate Schiff base ligand containing guanidine moiety: Synthesis, characterization, anticancer effect, and antimicrobial activity, J. Mol. Struct., 1203, 127381.
[23] Anacona, J.R., Ruiz, K., Loroño, M., and Celis, F., 2019, Antibacterial activity of transition metal complexes containing a tridentate NNO phenoxymethylpenicillin‐based Schiff base. An anti‐MRSA iron(II) complex, Appl. Organomet. Chem., 33 (4), e4744.
[24] Rapheal, P.F., Manoj, E., Kurup, M.R.P., and Fun, H.K., 2021, Nickel(II) complexes of N(4)-substituted thiosemicarbazones derived from pyridine-2-carbaldehyde: Crystal structures, spectral aspects and Hirshfeld surface analysis, J. Mol. Struct., 1237, 130362.
[25] Hamil, A., Khalifa, K.M., Almutaleb, A.A., and Nouradean, M.Q., 2020, Synthesis, characterization and antibacterial activity studies of some transition metal chelates of Mn(II), Ni(II) and Cu(II) with Schiff base derived from diacetylmonoxime with O-phenylenediamine, Adv. J. Chem. A, 3 (4), 524–533.
[26] Kargar, H., Torabi, V., Akbari, A., Behjatmanesh-Ardakani, R., Sahraei, A., and Tahir, M.N., 2020, Pd(II) and Ni(II) complexes containing an asymmetric Schiff base ligand: Synthesis, X-ray crystal structure, spectroscopic investigations and computational studies, J. Mol. Struct., 1205, 127642.
[27] Adachi, J., Mori, T., Inoue, R., Naito, M., Le, N.H.T., Kawamorita, S., and Ariga, K., 2020, Emission control by molecular manipulation of double‐paddled binuclear PtII complexes at the air‐water interface, Chem. Asian J., 15 (3), 406–414.
[28] Yang, Y.J., Li, Y.H., Liu, D., and Cui, G.H., 2020, A dual-responsive luminescent sensor based on a water-stable Cd(II)-MOF for the highly selective and sensitive detection of acetylacetone and Cr2O72− in aqueous solutions, CrystEngComm, 22 (7), 1166–1175.
[29] Tenorio, K.V., Fortunato, A.B., Moreira, J.M., Roman, D., D’Oliveira, K.A., Cuin, A., Brasil, D.M., Pinto, L.M.C., Colman, T.A.D., and Carvalho, C.T., 2020, Thermal analysis combined with X-ray diffraction/Rietveld method, FT-IR and UV-vis spectroscopy: Structural characterization of the lanthanum and cerium(III) polycrystalline complexes, Thermochim. Acta, 178662.
[30] Djunaidi, M.C., Setiyo, P.D., Lusiana, R.A., and Anggun Y., 2020, In-situ ionic imprinted membrane (IIM) synthesis based on acetic polyeugenoxy acetyl tiophen methanolate for gold(III) metal ion transports, Indones. J. Chem., 20 (6), 1323–1331.
[31] Bisceglie, F., Bacci, C., Vismarra, A., Barilli, E., Pioli, M., Orsoni, N., and Pelosi, G., 2020, Antibacterial activity of metal complexes based on cinnamaldehyde thiosemicarbazone analogues, J. Inorg. Biochem., 203, 110888.
DOI: https://doi.org/10.22146/ijc.67021
Article Metrics
Abstract views : 3772 | views : 2560 | views : 1045Copyright (c) 2021 Indonesian Journal of Chemistry
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.
View The Statistics of Indones. J. Chem.