Improving the Performance of Polymer Inclusion Membranes in Separation Process Using Alternative Base Polymers: A Review

https://doi.org/10.22146/ijc.68311

Fidelis Nitti(1*), Odi Theofilus Edison Selan(2), Bosirul Hoque(3), David Tambaru(4), Muhammad Cholid Djunaidi(5)

(1) Department of Chemistry, University of Nusa Cendana, Jl. Adi Sucipto, Penfui, Kupang 85001, Nusa Tenggara Timur, Indonesia
(2) Department of Chemistry, University of Nusa Cendana, Jl. Adi Sucipto, Penfui, Kupang 85001, Nusa Tenggara Timur, Indonesia
(3) School of Chemistry, The University of Melbourne, Masson Road, Parkville 3052, Melbourne, Australia
(4) Department of Chemistry, University of Nusa Cendana, Jl. Adi Sucipto, Penfui, Kupang 85001, Nusa Tenggara Timur, Indonesia; School of Chemistry, The University of Melbourne, Masson Road, Parkville 3052, Melbourne, Australia
(5) Department of Chemistry, Faculty of Science and Mathematics, Diponegoro University, Jl. Prof. Soedarto S.H., Tembalang, Semarang 50275, Indonesia
(*) Corresponding Author

Abstract


Polymer inclusion membrane (PIM) has recently evolved as an alternative separation technique to conventional solvent extraction as it eliminates the use of toxic solvents, reduces separation cost, and simplifies the separation process. PIM is the new generation of a liquid membrane made by casting solution containing liquid phases (extractant and plasticizer/modifier) and base polymers. Despite its better performance and stability in comparison to the previous types of liquid membranes, PIM's robustness for applications on an industrial scale is still considered insufficient mainly due to its limited stability in the long-term separation process. In recent years, different approaches have been devoted to improving the stability of PIM while maintaining its performance. This review aims to summarize and evaluate the current literature on the improvement of the performance of PIMs with particular focus on the use of alternative base polymers, including non-conventional linear homopolymers, copolymers, or cross-linking polymers. Furthermore, more emphasis is given to the composition, fabrication process, and application of the PIMs. Finally, the performance of the PIMs with the alternative base polymers in terms of extraction rate and long-term stability is presented and compared to the PIMs fabricated using their corresponding common base polymers.


Keywords


polymer inclusion membrane; separation; alternative base polymer; copolymers; cross-linking polymers

Full Text:

Full Text PDF


References

[1] Almeida, M.I.G.S., Cattrall, R.W., and Kolev, S.D., 2012, Recent trends in extraction and transport of metal ions using polymer inclusion membranes (PIMs), J. Membr. Sci., 415-416, 9–23.

[2] Djunaidi, M.C., Fauzi, H., and Hastuti, R., 2018, Desalination of sea water using polymer inclusion membrane (PIM) with Aliquat 336-TBP (tributhyl phosphate) as carrier compound, MATEC Web Conf., 156, 08004.

[3] Kiswandono, A.A., Siswanta, D., Aprilita, N.H., and Santosa, S.J., 2012, Transport of phenol through inclusion polymer membrane (PIM) using copoly (eugenol-DVB) as membrane carriers, Indones. J. Chem., 12 (2), 105–112.

[4] Nghiem, L.D., Mornane, P., Potter, I.D., Perera, J., Cattrall, R.W., and Kolev, S.D., 2006, Extraction and transport of metal ions and small organic compounds using polymer inclusion membranes (PIMs), J. Membr. Sci., 281 (1-2), 7–41.

[5] Almeida, M.I.G.S., Cattrall, R.W., and Kolev, S.D., 2017, Polymer inclusion membranes (PIMs) in chemical analysis - A review, Anal. Chim. Acta, 987, 1–14.

[6] Jha, R., Rao, M.D., Meshram, A., Verma, H.R., and Singh, K.K., 2020, Potential of polymer inclusion membrane process for selective recovery of metal values from waste printed circuit boards: A review, J. Cleaner Prod., 265, 121621.

[7] Mwakalesi, A.J., and Potter, I.D., 2020, Removal of picloram herbicide from an aqueous environment using polymer inclusion membranes, J. Environ. Chem. Eng., 8 (5), 103936.

[8] Kuswandi, B., Nitti, F., Almeida, M.I.G.S., and Kolev, S.D., 2020, Water monitoring using polymer inclusion membranes: A review, Environ. Chem. Lett., 18 (1), 129–150.

[9] Almeida, M.I.G.S., Chan, C., Pettigrove, V.J., Cattrall, R.W., and Kolev, S.D., 2014, Development of a passive sampler for Zinc(II) in urban pond waters using a polymer inclusion membrane, Environ. Pollut., 193, 233–239.

[10] Nitti, F., Almeida, M.I.G.S., Morrison, R., Cattrall, R.W., Pettigrove, V.J., Coleman, R.A., and Kolev, S.D., 2018, Development of a portable 3D-printed flow-through passive sampling device free of flow pattern effects, Microchem. J., 143, 359–366.

[11] Nitti, F., 2020, Development of flow-through devices for passive sampling of zinc (II) in aquatic systems free from environmental effects, Dissertation, University of Melbourne, Australia.

[12] Garcia-Rodríguez, A., Fontàs, C., Matamoros, V., Almeida, M.I.G.S., Cattrall, R.W., and Kolev, S.D., 2016, Development of a polymer inclusion membrane-based passive sampler for monitoring of sulfamethoxazole in natural waters. Minimizing the effect of the flow pattern of the aquatic system, Microchem. J., 124, 175–180.

[13] Vera, R., Anticó, E., and Fontàs, C., 2018, The use of a polymer inclusion membrane for arsenate determination in groundwater, Water, 10 (8), 1093.

[14] Zhang, L.L., Cattrall, R.W., and Kolev, S.D., 2011, The use of a polymer inclusion membrane in flow injection analysis for the on-line separation and determination of zinc, Talanta, 84 (5), 1278–1283.

[15] Yaftian, M.R., Almeida, M.I.G.S., Cattrall, R.W., and Kolev, S.D., 2018, Flow injection spectrophotometric determination of V(V) involving on-line separation using a poly(vinylidene fluoride-co-hexafluoropropylene)-based polymer inclusion membrane, Talanta, 181, 385–391.

[16] Casanueva-Marenco, M.J., Díaz-de-Alba, M.I., Herrera-Armario, A., Galindo-Riaño, M.D., and Granado-Castro, M.D., 2020, Design and optimization of a single-use optical sensor based on a polymer inclusion membrane for zinc determination in drinks, food supplement and foot health care products, Mater. Sci. Eng., C, 110, 110680.

[17] Jayawardane, B.M., Coo, L.D., Cattrall, R.W., and Kolev, S.D., 2013, The use of a polymer inclusion membrane in a paper-based sensor for the selective determination of Cu(II), Anal. Chim. Acta, 803, 106–112.

[18] Zulkefeli, N.S.W., Weng, S.K., and Abdul Halim, N.S., 2018, Removal of heavy metals by polymer inclusion membranes, Curr. Pollut. Rep., 4 (2), 84–92.

[19] Keskin, B., Zeytuncu-Gökoğlu, B., and Koyuncu, I., 2021, Polymer inclusion membrane applications for transport of metal ions: A critical review, Chemosphere, 279, 130604.

[20] Olasupo, A., and Suah, F.B.M., 2021, Recent advances in the removal of pharmaceuticals and endocrine-disrupting compounds in the aquatic system: A case of polymer inclusion membranes, J. Hazard. Mater., 406, 124317.

[21] Kazemi, D., Yaftian, M.R., and Kolev, S.D., 2021, Selective extraction of Bi(III) from sulfate solutions by a poly(vinyl chloride) based polymer inclusion membrane incorporating bis(2-ethylhexyl)phosphoric acid as the extractant, React. Funct. Polym., 164, 104935.

[22] Abdul Halim, N.S., Whitten, P.G., and Nghiem, L.D., 2016, The effect of aging on thermomechanical and metal extraction properties of poly (vinyl chloride)/Aliquat 336 polymer inclusion membranes, Desalin. Water Treat., 57 (7), 3298–3303.

[23] Mwakalesi, A.J., and Potter, I.D., 2021, Targeting of cationic organic pesticide residues using polymer inclusion membranes containing anacardic acid from cashew nut shell liquid as a green carrier, J. Water Process Eng., 43, 102222.

[24] Chen, L., and Chen, J., 2016, Asymmetric membrane containing ionic liquid [A336][P507] for the pre-concentration and separation of heavy rare earth Lutetium, ACS Sustainable Chem. Eng., 4 (5), 2644–2650.

[25] Carner, C.A., Croft, C.F., Kolev, S.D., and Almeida, M.I.G.S., 2020, Green solvents for the fabrication of polymer inclusion membranes (PIMs), Sep. Purif. Technol., 239, 116486.

[26] Vera, R., Anticó, E., Eguiazábal, J.I., Aranburu, N., and Fontàs, C., 2019, First report on a solvent-free preparation of polymer inclusion membranes with an ionic liquid, Molecules, 24 (10), 1845.

[27] Kaya, A., Onac, C., Alpoğuz, H.K., Agarwal, S., Gupta, V.K., Atar, N., and Yilmaz, A., 2016, Reduced graphene oxide based a novel polymer inclusion membrane: Transport studies of Cr(VI), J. Mol. Liq., 219, 1124–1130.

[28] Matsuoka, H., Aizawa, M., and Suzuki, S., 1980, Uphill transport of uranium across a liquid membrane, J. Membr. Sci., 7 (1), 11–19.

[29] Cho, Y., Xu, C., Cattrall, R.W., and Kolev, S.D., 2011, A polymer inclusion membrane for extracting thiocyanate from weakly alkaline solutions, J. Membr. Sci., 367 (1-2), 85–90.

[30] Lee, S.C., Lamb, J.D., Cho, M.H., Rhee, C.H., and Kim, J.S., 2000, A lipophilic acyclic polyether dicarboxylic acid as Pb2+ carrier in polymer inclusion and bulk liquid membranes, Sep. Sci. Technol., 35 (5), 767–778.

[31] Kebiche-Senhadji, O., Mansouri, L., Tingry, S., Seta, P., and Benamor, M., 2008, Facilitated Cd(II) transport across CTA polymer inclusion membrane using anion (Aliquat 336) and cation (D2EHPA) metal carriers, J. Membr. Sci., 310 (1-2), 438–445.

[32] Kaya, A., Onac, C., Alpoguz, H.K., Yilmaz, A., and Atar, N., 2016, Removal of Cr(VI) through calixarene based polymer inclusion membrane from chrome plating bath water, Chem. Eng. J., 283, 141–149.

[33] Kebiche-Senhadji, O., Tingry, S., Seta, P., and Benamor, M., 2010, Selective extraction of Cr(VI) over metallic species by polymer inclusion membrane (PIM) using anion (Aliquat 336) as carrier, Desalination, 258 (1-3), 59–65.

[34] Ghaderi, N., Dolatyari, L., Kazemi, D., Sharafi, H.R., Shayani-Jam, H., and Yaftian, M.R., 2021, Application of a polymer inclusion membrane made of cellulose triacetate base polymer and trioctylamine for the selective extraction of bismuth(III) from chloride solutions, J. Appl. Polym. Sci., 139 (2), 51480.

[35] Gardner, J.S., Walker, J.O., and Lamb, J.D., 2004, Permeability and durability effects of cellulose polymer variation in polymer inclusion membranes, J. Membr. Sci., 229 (1-2), 87–93.

[36] Kise, H., 1982, Dehydrochlorination of poly(vinyl chloride) by aqueous sodium hydroxide solution under two-phase conditions, J. Polym. Sci., Polym. Chem. Ed., 20 (11), 3189–3197.

[37] Argiropoulos, G., Cattrall, R.W., Hamilton, I.C., Kolev, S.D., and Paimin, R., 1998, The study of a membrane for extracting gold(III) from hydrochloric acid solutions, J. Membr. Sci., 138 (2), 279–285.

[38] Xu, J., Paimin, R., Shen, W., and Wang, X., 2003, An investigation of solubility of Aliquat 336 in different extracted solutions, Fibers Polym., 4 (1), 27–31.

[39] Zhang, C., Mu, Y., Zhao, S., Zhang, W., and Wang, Y., 2020, Lithium extraction from synthetic brine with high Mg2+/Li+ ratio using the polymer inclusion membrane, Desalination, 496, 114710.

[40] Kiswandono, A.A., Siswanta, D., Aprilita, N.H., Santosa, S.J., and Hayashita, T., 2013, Extending the life time of polymer inclusion membrane containing copoly (Eugenol-DVB) as carrier for phenol transport, Indones. J. Chem., 13 (3), 254–261.

[41] Kunene, P., Akinbami, O., Motsoane, N., Tutu, H., Chimuka, L., and Richards, H., 2020, Feasibility of polysulfone as base polymer in a polymer inclusion membrane: Synthesis and characterisation, J. Membr. Sci. Res., 6 (2), 203–210.

[42] Liu, F., Hashim, N.A., Liu, Y., Abed, M.R.M., and Li, K., 2011, Progress in the production and modification of PVDF membranes, J. Membr. Sci., 375 (1-2), 1–27.

[43] Kozlowski, C., and Walkowiak, W., 2005, Applicability of liquid membranes in chromium(VI) transport with amines as ion carriers, J. Membr. Sci., 266 (1-2), 143–150.

[44] Wang, Z., Sun, Y., Tang, N., Miao, C., Wang, Y., Tang, L., Wang, S., and Yang, X., 2019, Simultaneous extraction and recovery of gold(I) from alkaline solutions using an environmentally benign polymer inclusion membrane with ionic liquid as the carrier, Sep. Purif. Technol., 222, 136–144.

[45] Sun, Y., Wang, Z., Wang, Y., Liu, M., Li, S., Tang, L., Wang, S., Yang, X., and Ji, S., 2020, Improved transport of gold(I) from aurocyanide solution using a green ionic liquid-based polymer inclusion membrane with in-situ electrodeposition, Chem. Eng. Res. Des., 153, 136–145.

[46] Bey, S., Criscuoli, A., Figoli, A., Leopold, A., Simone, S., Benamor, M., and Drioli, E., 2010, Removal of As(V) by PVDF hollow fibers membrane contactors using Aliquat-336 as extractant, Desalination, 264 (3), 193–200.

[47] Sellami, F., Kebiche-Senhadji, O., Marais, S., Colasse, L., and Fatyeyeva, K., 2020, Enhanced removal of Cr(VI) by polymer inclusion membrane based on poly(vinylidene fluoride) and Aliquat 336, Sep. Purif. Technol., 248, 117038.

[48] Chaouqi, Y., Ouchn, R., Eljaddi, T., Jada, A., El bouchti, M., Cherkaoui, O., and Hlaibi, M., 2019, New polymer inclusion membrane containing NTA as carrier for the recovery of chromium and nickel from textiles wastewater, Mater. Today: Proc., 13, 698–705.

[49] Wang, D., Liu, F., Zhang, X., Wu, M., Wang, F., Liu, J., Wang, J., Liu, Q., and Zeng, H., 2021, A Janus facilitated transport membrane with asymmetric surface wettability and dense/porous structure: Enabling high stability and separation efficiency, J. Membr. Sci., 626, 119183.

[50] Huang, S., Chen, J., Chen, L., Zou, D., and Liu, C., 2020, A polymer inclusion membrane functionalized by di(2-ethylhexyl) phosphinic acid with hierarchically ordered porous structure for Lutetium(III) transport, J. Membr. Sci., 593, 117458.

[51] Huang, S., Chen, J., and Zou, D., 2020, A preliminary study of polymer inclusion membrane for lutetium(III) separation and membrane regeneration, J. Rare Earths, 39 (10), 1256–1263.

[52] Guo, L., Liu, Y., Zhang, C., and Chen, J., 2011, Preparation of PVDF-based polymer inclusion membrane using ionic liquid plasticizer and Cyphos IL 104 carrier for Cr(VI) transport, J. Membr. Sci., 372 (1-2), 314–321.

[53] Zioui, D., Arous, O., Mameri, N., Kerdjoudj, H., Sebastian, M.S., Vilas, J.L., Nunes-Pereira, J., and Lanceros-Méndez, S., 2017, Membranes based on polymer miscibility for selective transport and separation of metallic ions, J. Hazard. Mater., 336, 188–194.

[54] Sedkaoui, Y., Abdellaoui, N., Arous, O., Lounici, H., Nasrallah, N., and Szymczyk, A., 2020, Elaboration and characterization of multilayer polymeric membranes: Effect of the chemical nature of polymers, J. Polym. Eng., 41 (2), 127–136.

[55] Wang, Y., Chen, L., Yan, Y., Chen, J., Dai, J., and Dai, X., 2020, Separation of adjacent heavy rare earth Lutetium (III) and Ytterbium (III) by task-specific ionic liquid Cyphos IL 104 embedded polymer inclusion membrane, J. Membr. Sci., 610, 118263.

[56] O'Bryan, Y., Cattrall, R.W., Truong, Y.B., Kyratzis, I.L., and Kolev, S.D., 2016, The use of poly(vinylidenefluoride-co-hexafluoropropylene) for the preparation of polymer inclusion membranes. Application to the extraction of thiocyanate, J. Membr. Sci., 510, 481–488.

[57] Bonggotgetsakul, Y.Y.N., Cattrall, R.W., and Kolev, S.D., 2016, Recovery of gold from aqua regia digested electronic scrap using a poly(vinylidene fluoride-co-hexafluoropropene) (PVDF-HFP) based polymer inclusion membrane (PIM) containing Cyphos® IL 104, J. Membr. Sci., 514, 274–281.

[58] Chae, S.R., Yamamura, H., Ikeda, K., and Watanabe, Y., 2008, Comparison of fouling characteristics of two different poly-vinylidene fluoride microfiltration membranes in a pilot-scale drinking water treatment system using pre-coagulation/sedimentation, sand filtration, and chlorination, Water Res., 42 (8-9), 2029–2042.

[59] Fontàs, C., Anticó, E., Vocanson, F., Lamartine, R., and Seta, P., 2007, Efficient thiacalix[4]arenes for the extraction and separation of Au(III), Pd(II) and Pt(IV) metal ions from acidic media incorporated in membranes and solid phases, Sep. Purif. Technol., 54 (3), 322–328.

[60] Choe, H.S., Giaccai, J., Alamgir, M., and Abraham, K.M., 1995, Preparation and characterization of poly(vinyl sulfone)- and poly(vinylidene fluoride)-based electrolytes, Electrochim. Acta, 40 (13-14), 2289–2293.

[61] Stolarska, M., Niedzicki, L., Borkowska, R., Zalewska, A., and Wieczorek, W., 2007, Structure, transport properties and interfacial stability of PVdF/HFP electrolytes containing modified inorganic filler, Electrochim. Acta, 53 (4), 1512–1517.

[62] Guo, L., Zhang, J., Zhang, D., Liu, Y., Deng, Y., and Chen, J., 2012, Preparation of poly(vinylidene fluoride-co-tetrafluoroethylene)-based polymer inclusion membrane using bifunctional ionic liquid extractant for Cr(VI) transport, Ind. Eng. Chem. Res., 51 (6), 2714–2722.

[63] Bahrami, S., Yaftian, M.R., Najvak, P., Dolatyari, L., Shayani-Jam, H., and Kolev, S.D., 2020, PVDF-HFP based polymer inclusion membranes containing Cyphos® IL 101 and Aliquat® 336 for the removal of Cr(VI) from sulfate solutions, Sep. Purif. Technol., 250, 117251.

[64] Nagul, E.A., Croft, C.F., Cattrall, R.W., and Kolev, S.D., 2019, Nanostructural characterisation of polymer inclusion membranes using X-ray scattering, J. Membr. Sci., 588, 117208.

[65] Wang, D., Liu, J., Chen, J., Liu, Q., and Zeng, H., 2020, New insights into the interfacial behavior and swelling of polymer inclusion membrane (PIM) during Zn(II) extraction process, Chem. Eng. Sci., 220, 115620.

[66] Wang, D., Cattrall, R.W., Li, J., Almeida, M.I.G.S., Stevens, G.W., and Kolev, S.D., 2017, A poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP)-based polymer inclusion membrane (PIM) containing LIX84I for the extraction and transport of Cu(II) from its ammonium sulfate/ammonia solutions, J. Membr. Sci., 542, 272–279.

[67] Wang, D., Cattrall, R.W., Li, J., Almeida, M.I.G.S., Stevens, G.W., and Kolev, S.D., 2018, A comparison of the use of commercial and diluent free LIX84I in poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP)-based polymer inclusion membranes for the extraction and transport of Cu(II), Sep. Purif. Technol., 202, 59–66.

[68] Fajar, A.T.N., Kubota, F., Firmansyah, M.L., and Goto, M., 2019, Separation of palladium(II) and rhodium(III) using a polymer inclusion membrane containing a phosphonium-based ionic liquid carrier, Ind. Eng. Chem. Res., 58 (49), 22334–22342.

[69] Fajar, A.T.N., Hanada, T., Firmansyah, M.L., Kubota, F., and Goto, M., 2020, Selective separation of platinum group metals via sequential transport through polymer inclusion membranes containing an ionic liquid carrier, ACS Sustainable Chem. Eng., 8 (30), 11283–11291.

[70] Fajar, A.T.N., Hanada, T., and Goto, M., 2021, Recovery of platinum group metals from a spent automotive catalyst using polymer inclusion membranes containing an ionic liquid carrier, J. Membr. Sci., 629, 119296.

[71] Xiong, X., Almeida, M.I.G.S., Simeonova, S., Spassov, T.G., Cattrall, R.W., and Kolev, S.D., 2019, The potential of polystyrene-block-polybutadiene-block-polystyrene triblock copolymer as a base-polymer of polymer inclusion membranes (PIMs), Sep. Purif. Technol., 229, 115800.

[72] Xiong, X., Zhang, L., Ma, Z., and Li, Y., 2005, Effects of molecular weight and arm number on properties of star-shape styrene–butadiene–styrene triblock copolymer, J. Appl. Polym. Sci., 95 (4), 832–840.

[73] Turgut, H.I., Eyupoglu, V., Kumbasar, R.A., and Sisman, I., 2017, Alkyl chain length dependent Cr(VI) transport by polymer inclusion membrane using room temperature ionic liquids as carrier and PVDF-co-HFP as polymer matrix, Sep. Purif. Technol., 175, 406–417.

[74] Yaftian, M.R., Almeida, M.I.G.S., Cattrall, R.W., and Kolev, S.D., 2018, Selective extraction of vanadium(V) from sulfate solutions into a polymer inclusion membrane composed of poly(vinylidenefluoride-co-hexafluoropropylene) and Cyphos® IL 101, J. Membr. Sci., 545, 57–65.

[75] Hanada, T., Firmansyah, M.L., Yoshida, W., Kubota, F., Kolev, S.D., and Goto, M., 2020, Transport of rhodium(III) from chloride media across a polymer inclusion membrane containing an ionic liquid metal ion carrier, ACS Omega, 5 (22), 12989–12995.

[76] Wang, B., Li, Z., Lang, Q., Tan, M., Ratanatamskul, C., Lee, M., Liu, Y., and Zhang, Y., 2020, A comprehensive investigation on the components in ionic liquid-based polymer inclusion membrane for Cr(VI) transport during electrodialysis, J. Membr. Sci., 604, 118016.

[77] Scindia, Y.M., Pandey, A.K., Reddy, A.V.R., and Manohar, S.B., 2002, Selective pre-concentration and determination of chromium(VI) using a flat sheet polymer inclusion sorbent: Potential application for Cr(VI) determination in real samples, Anal. Chem., 74 (16), 4204–4212.

[78] Kozlowski, C.A., and Walkowiak, W., 2004, Transport of Cr(VI), Zn(II), and Cd(II) ions across polymer inclusion membranes with tridecyl(pyridine) oxide and tri-n-Octylamine, Sep. Sci. Technol., 39 (13), 3127–3141.

[79] Nielsen, L.E., 1969, Cross-linking–effect on physical properties of polymers, J. Macromol. Sci., Polym. Rev., 3 (1), 69–103.

[80] Decker, C., 1999, Recent developments in photoinitiated radical polymerization, Macromol. Symp., 143 (1), 45–63.

[81] O'Bryan, Y., Truong, Y.B., Cattrall, R.W., Kyratzis, I.L., and Kolev, S.D., 2017, A new generation of highly stable and permeable polymer inclusion membranes (PIMs) with their carrier immobilized in a cross-linked semi-interpenetrating polymer network. Application to the transport of thiocyanate, J. Membr. Sci., 529, 55–62.

[82] Hoque, B., Almeida, M.I.G.S., Cattrall, R.W., Gopakumar, T.G., and Kolev, S.D., 2019, Effect of cross-linking on the performance of polymer inclusion membranes (PIMs) for the extraction, transport and separation of Zn(II), J. Membr. Sci., 589, 117256.

[83] Hoque, B., Almeida, M.I.G.S., Cattrall, R.W., Gopakumar, T.G., and Kolev, S.D., 2021, Improving the extraction performance of polymer inclusion membranes by cross-linking their polymeric backbone, React. Funct. Polym., 160, 104813.

[84] Hoque, B., Kolev, S.D., Cattrall, R.W., Gopakumar, T.G., and Almeida, M.I.G.S., 2021, A cross-linked polymer inclusion membrane for enhanced gold recovery from electronic waste, Waste Manage., 124, 54–62.

[85] Darvishi, R., Karimi-Sabet, J., and Esfahany, M.N., 2018, Preparation and characterization of a novel calcium-conducting polymer inclusion membrane: Part I, Korean J. Chem. Eng., 35 (10), 2052–2064.

[86] Kazemzadeh, H., Karimi-Sabet, J., Towfighi Darian, J., and Adhami, A., 2020, Evaluation of polymer inclusion membrane efficiency in selective separation of lithium ion from aqueous solution, Sep. Purif. Technol., 251, 117298.



DOI: https://doi.org/10.22146/ijc.68311

Article Metrics

Abstract views : 3976 | views : 2075


Copyright (c) 2021 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 / 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.