GC-MS Based Metabolite Profiling and Antibacterial Activity of Torch Ginger (Etlingera elatior) Flowers Extract

https://doi.org/10.22146/ijc.72583

Wahyu Haryati Maser(1*), Agus Purwoko(2), Nancy Dewi Yuliana(3), Linda Masniary Lubis(4), Alfi Khatib(5)

(1) Department of Food Technology, Faculty of Agriculture, Universitas Sumatera Utara, Jl. Dr. A. Sofian No. 3, Medan 20155, North Sumatera, Indonesia
(2) Department of Forestry, Faculty of Forestry, Universitas Sumatera Utara, Jl. Tri Darma Ujung No. 1, Medan 20155, North Sumatera, Indonesia
(3) Department of Food Science and Technology, Faculty of Agricultural Technology, IPB University, IPB Dramaga Campus, Bogor 16680, Indonesia
(4) Department of Food Technology, Faculty of Agriculture, Universitas Sumatera Utara, Jl. Dr. A. Sofian No. 3, Medan 20155, North Sumatera, Indonesia
(5) Department of Pharmaceutical Chemistry, Faculty of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Malaysia
(*) Corresponding Author

Abstract


Torch ginger (Etlingera elatior) flowers are well known for their antibacterial effects against Staphylococcus aureus, however, the active compounds are still unknown. The purpose of this study was to conduct GC-MS-based metabolite profiling of torch ginger flower and identify compounds correlated with its S. aureus antibacterial activity using Orthogonal Projection to Latent Structure (OPLS). Using the well diffusion method, the antibacterial activity of ethanol extract, hexane, chloroform, and ethyl acetate fractions with a concentration of 80 mg/mL were investigated. The ethyl acetate fraction inhibited S. aureus growth the most (diameter of inhibition zone, DIZ 13.00–13.20 mm), while the hexane (DIZ 9.55–10.05 mm) and chloroform (DIZ 10.00–11.00 mm) fractions had moderate inhibitory activity, but the ethanol extract had no antibacterial effect. Using OPLS analysis, the GC-MS metabolite profile of all extracts and fractions was linked with the profile of antibacterial activity. This analysis revealed that Dodecanoic acid, 5-Tetradecene, and n-Hexadecanoic acid were identified as the compounds that were significantly connected with antibacterial activity.

Keywords


antibacterial activity; Etlingera elatior; GC-MS; metabolite profiling; Staphylococcus aureus

Full Text:

Full Text PDF


References

[1] Lutfia, A., Munir, E., and Yurnaliza, Y., 2020, Molecular identification of endophytic fungi from torch ginger (Etlingera elatior) antagonist to phytopathogenic fungi, Biodiversitas, 21 (6), 2681–2689.

[2] Anzian, A., Rashidah, S., Nazamid, S., Che Wan Sapawi, C.W.N., and Meor Hussin, A.S., 2017, Chemical composition and antioxidant activity of torch ginger (Etlingera elatior) flower extract, Food Appl. Biosci. J., 5 (1), 32–49.

[3] Ghasemzadeh, A., Jaafar, H.Z.E., Rahmat, A., and Ashkani, S., 2015, Secondary metabolites constituents and antioxidant, anticancer and antibacterial activities of Etlingera elatior (Jack) R.M.Sm grown in different locations of Malaysia, BMC Complementary Altern. Med., 15, 335.

[4] Juwita, T., Puspitasari, I.M., and Levita, J., 2018, Torch ginger (Etlingera elatior): A review on its botanical aspects, phytoconstituents and pharmacological activities, Pak. J. Biol. Sci., 21 (4), 151–165.

[5] Nickerson, E.K., Wuthiekanun, V., Wongsuvan, G., Limmathurosakul, D., Srisamang, P., Mahavanakul, W., Thaipadungpanit, J., Shah, K.R., Arayawichanont, A., Amornchai, P., Thanwisai, A.T., Day, N.P., and Peacock, S.J., 2009, Factors predicting and reducing mortality in patients with invasive Staphylococcus aureus disease in a developing country, Plos One, 4 (8), e6512.

[6] Wijekoon, M.M.J.O., Bhat, R., Karim, A.A., and Fazilah, A., 2013, Chemical composition and antimicrobial activity of essential oil and solvent extracts of torch ginger inflorescence (Etlingera elatior Jack.), Int. J. Food Prop., 16 (6), 1200–1210.

[7] Maser, W., Rusmarilin, H., and Yuliana, N., 2017, Aplikasi metabolomik berbasis HPLC untuk mengidentifikasi waktu retensi komponen antibakteri Stapylococcus aureus pada ekstrak bunga kecombrang (Etlingera elatior), ALCHEMY Jurnal Penelitian Kimia, 13 (2), 241–251.

[8] Yuliana, N.D., Khatib, A., Verpoorte, R., and Choi, Y.H., 2011, Comprehensive extraction method integrated with NMR metabolomics: A new bioactivity screening method for plants, adenosine A1 receptor binding compounds in Orthosiphon stamineus Benth, Anal. Chem., 83 (17), 6902–6906.

[9] Maser, W.H., Yuliana, N.D., and Andarwulan, N., 2015, Rapid identification of antibacterial compounds from Turkey berry by HPLC-based metabolomics, J. Liq. Chromatogr. Relat. Technol., 38 (12), 1230–1235.

[10] Gathungu, R.M., Kautz, R., Kristal, B.S., Bird, S.S., and Vouros, P., 2020, The integration of LC-MS and NMR for the analysis of low molecular weight trace analytes in complex matrices, Mass Spectrom. Rev., 39 (1-2), 35–54.

[11] Jorge, T.F., Mata, A.T., and António, C., 2016, Mass spectrometry as a quantitative tool in plant metabolomics, Philos. Trans. R. Soc., A, 374 (2079), 20150370.

[12] Javadi, N., Abas, F., Hamid, A.A., Simoh, S., Shaari, K., Ismail, I.S., Mediani, A., and Khatib, A., 2014, GC‐MS‐based metabolite profiling of Cosmos caudatus leaves possessing alpha‐glucosidase inhibitory activity, J. Food Sci., 79, C1130–C1136.

[13] Murugesu, S., Ibrahim, Z., Ahmed, Q.U., Nik Yusoff, N.I., Uzir, B.F., Perumal, V., Abas, F., Saari, K., El-Seedi, H., and Khatib, A., 2018, Characterization of α-glucosidase inhibitors from Clinacanthus nutans Lindau leaves by gas chromatography-mass spectrometry-based metabolomics and molecular docking simulation, Molecules, 23 (9), 2402.

[14] Tan, D.C., Kassim, N.K., Ismail, I.S., Hamid, M., and Ahamad Bustamam, M.S., 2019, Identification of antidiabetic metabolites from Paederia foetida L. twigs by gas chromatography-mass spectrometry-based metabolomics and molecular docking study, Biomed Res. Int., 2019, 7603125.

[15] Balouiri, M., Sadiki, M., and Ibnsouda, S.K., 2016, Methods for in vitro evaluating antimicrobial activity: A review, J. Pharm. Anal., 6 (2), 71–79.

[16] Weisenhorn, E.M.M., van ′t Erve, T.J., Riley, N.M., Hess, J.R., Raife, T.J., and Coon, J.J., 2016, Multi-omics evidence for inheritance of energy pathways in red blood cells, Mol. Cell. Proteomics, 15 (12), 3614–3623.

[17] Anzian, A., Muhialdin, B.J., Mohammed, N.K., Kadum, H., Marzlan, A.A., Sukor, R., and Meor Hussin, A.S., 2020, Antibacterial activity and metabolomics profiling of torch ginger (Etlingera elatior Jack) flower oil extracted using subcritical carbon dioxide (CO2), Evidence-Based Complementary Altern. Med., 2020, 4373401.

[18] Susanti, D., Awang, N.A., Qaralleh, H., Sheikh Mohamed, H.I., and Attoumani, N., 2013, Antimicrobial activity and chemical composition of essential oil of Malaysian Etlingera elatior (Jack) RM Smith flowers, J. Essent. Oil Bear. Plants, 16 (2), 294–299.

[19] Kumar, V., Ahluwalia, V., Saran, S., Kumar, J., Patel, A.K., and Singhania, R.R., 2021, Recent developments on solid-state fermentation for production of microbial secondary metabolites: Challenges and solutions, Bioresour. Technol., 323, 124566.

[20] Maimulyanti, A., and Prihadi, A.R., 2015, Chemical composition, phytochemical and antioxidant activity from extract of Etlingera elatior flower from Indonesia, J. Pharmacogn. Phytochem., 3 (6), 233–238.

[21] Sukandar, D., Fitriyanti, M., Amelia, E.R., Riyadhi, A., and Azizah, R.N., 2017, Characterization of Chemical Constituent and Antibacterial Activity of Honje Fruit Skin (Etlingera elatior), Proceedings of the International Conference on Science and Technology (ICOSAT 2017), 21–24.

[22] Abdelwahab, S.I., Zaman, F.Q., Mariod, A.A., Yaacob, M., Ahmed Abdelmageed, A.H., and Khamis, S., 2010, Chemical composition, antioxidant and antibacterial properties of the essential oils of Etlingera elatior and Cinnamomum pubescens Kochummen, J. Sci. Food Agric., 90 (15), 2682–2688.

[23] Anzaku, A., Akyala, J., Juliet, A., and Obianuju, E., 2017, Antibacterial activity of lauric acid on some selected clinical isolates, Ann. Clin. Lab. Res., 5 (2), 1–5.

[24] Yff, B.T., Lindsey, K.L., Taylor, M.B., Erasmus, D.G., and Jäger, A.K., 2002, The pharmacological screening of Pentanisia prunelloides and the isolation of the antibacterial compound palmitic acid, J. Ethnopharmacol., 79 (1), 101–107.

[25] Kubo, I., Muroi, H., Masaki, H., and Kubo, A., 1993, Antibacterial activity of long-chain alcohols: The role of hydrophobic alkyl groups, Bioorg. Med. Chem. Lett., 3 (6), 1305–1308.

[26] Meng, K., Chen, D., Yang, F., Zhang, A., Tao, Y., Qu, W., Pan, Y., Hao, H., and Xie, S., 2020, Intracellular delivery, accumulation, and discrepancy in antibacterial activity of four enrofloxacin-loaded fatty acid solid lipid nanoparticles, Colloids Surf., B, 194, 111196.

[27] Fraise, A., Wilkinson, M., Bradley, C., Oppenheim, B., and Moiemen, N., 2013, The antibacterial activity and stability of acetic acid, J. Hosp. Infect., 84 (4), 329–331.

[28] Kim, S.H., Yun, Y., and An, S., 2018, A study on synergistic antibacterial activity of cosmetic ingredients, J. Soc. Cosmet. Sci. Korea, 44 (1), 1–7.

[29] Tao, C., Wu, J., Liu, Y., Liu, M., Yang, R., and Lv, Z., 2018, Antimicrobial activities of bamboo (Phyllostachys heterocycla cv. Pubescens) leaf essential oil and its major components, Eur. Food Res. Technol., 244 (5), 881–891.

[30] Kubo, I., Muroi, H., and Kubo, A., 1995, Structural functions of antimicrobial long-chain alcohols and phenols, Bioorg. Med. Chem., 3 (7), 873–880.

[31] Srey, C., 2015, Chemical study of Etlingera elatior (Zingiberaceae)-rhizome and its α-glucosidase and α-amylase inhibitory activities, Thesis, Prince of Songkla University, Thailand.

[32] Arifullah, M., Vikram, P., Chiruvella, K.K., Shaik, M.M., and Ripain, I.H.B.A., 2014, A review on Malaysian plants used for screening of antimicrobial activity, Annu. Res. Rev. Biol., 4 (13), 2088–2132.

[33] You, R., Wang, L., Shi, C., Chen, H., Zhang, S., Hu, M., and Tao, Y., 2020, Efficient production of myo-inositol in Escherichia coli through metabolic engineering, Microb. Cell Fact., 19 (1), 109.

[34] Matloub, A.A., Hamed, M.A., and El Souda, S., 2014, Chemo-protective effect on hepato-renal toxicity and cytotoxic activity of lipoidal matter of Atriplex lindleyi Moq, Int. J. Pharm. Pharm. Sci., 6 (8), 187–196.

[35] Bakr, R.O., Mohamed, S.A., and Waly, N.E., 2017, Phytochemical and biological investigation of Eugenia uniflora L. cultivated in Egypt, J. Pharmacogn. Phytother., 9 (5), 57–66.

[36] Song, S.H., Park, D.H., Bae, M.S., Choi, C.Y., Shim, J.H., Yoon, G., Cho, Y.C., Oh, D.S., Yoon, I.S., and Cho, S.S., 2018, Ethanol extract of Cudrania tricuspidata leaf ameliorates hyperuricemia in mice via inhibition of hepatic and serum xanthine oxidase activity, Evidence-Based Complementary Altern. Med., 2018, 8037925.

[37] Punnawich, Y., Montree, I., Warin, I., and Kan, C., 2009, Antifungal effects of Thai medicinal plants against Collectotrichum gloeosporioides Penz., Philipp. Agric. Sci., 92 (3), 265–270.

[38] Desbois, A.P., and Smith, V.J., 2010, Antibacterial free fatty acids: Activities, mechanisms of action and biotechnological potential, Appl. Microbiol. Biotechnol., 85 (6), 1629–1642.

[39] Willie, P., Uyoh, E.A., and Aikpokpodion, P.O., 2021, Gas chromatography-mass spectrometry (GC-MS) assay of bio-active compounds and phytochemical analyses in three species of Apocynaceae, Pharmacogn. J., 13 (2), 383–392.

[40] Swamy, M.K., Arumugam, G., Kaur, R., Ghasemzadeh, A., Yusoff, M.M., and Sinniah, U.R., 2017, GC-MS based metabolite profiling, antioxidant and antimicrobial properties of different solvent extracts of Malaysian Plectranthus amboinicus leaves, Evidence-Based Complementary Altern. Med., 2017, 1517683.



DOI: https://doi.org/10.22146/ijc.72583

Article Metrics

Abstract views : 6315 | views : 4596


Copyright (c) 2022 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.