Preparation and Characterization of Magnetic Material/Chitosan Composite Modified with Glycidyl-Trimethylammonium Chloride

https://doi.org/10.22146/ijc.88758

Feri Mukhayani(1), Eko Sri Kunarti(2), Yuichi Kamiya(3), Nuryono Nuryono(4*)

(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(3) Research Faculty of Environmental Earth Science, Hokkaido University, Nishi 5, Kita 10, Kita-ku, Sapporo 060-0810, Japan
(4) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(*) Corresponding Author

Abstract


Glycidyl-trimethylammonium chloride (GTMAC) containing quaternary ammonium (QA) groups is commonly used as a base catalyst for any organic reaction. This research prepared a novel composite of GTMAC attached to chitosan-coated magnetic material (MM/Chi/GTMAC) using a precipitation method. The effect of chitosan and GTMAC contents on MM/chi/GTMAC properties was studied, where the chitosan content varied from 0, 0.3, 0.5, 1.0, and 3.0 mol, and GTMAC varied from 0, 0.3, 0.8, 1.0, 1.5, and 3 mL with the constant mass of MM (0.4640 g). The physicochemical and morphological properties were characterized with FTIR, SEM-EDX, XRD, TGA, UV-vis, AAS, and zeta-sizer, and the magnetic strength was simply tested with an external magnet. The result showed that a mixture containing chitosan and GTMAC of 0.358 g and 1.5 mL was an optimum composition, in which MM/chi(0.5)/GTMAC(1.5) has high thermal stability, low chitosan and Fe solubility, and optimum content of QA (0.284 mol/g) without loss of magnetic strength. The higher the amount of chitosan, the lower the magnetic properties, and the higher the GTMAC did not increase the QA content. Therefore, the composite produced has the potential to be a novel heterogeneous base catalyst that is quickly recovered from any organic reaction media.


Keywords


glycidyl-trimethylammonium chloride; MM modified chitosan; physicochemical properties

Full Text:

Full Text PDF


References

[1] Matsuoka, K., Takahashi, N., Yada, S., and Yoshimura, T., 2019, Solubilization ability of star-shaped trimeric quaternary ammonium bromide surfactant, J. Mol. Liq., 291, 111254.

[2] Jiang, H., Xiang, G., Khoso, S.A., Xie, J., Huang, K., and Xu, L., 2019, Comparative studies of quaternary ammonium salts on the aggregation and dispersion behavior of kaolinite and quartz, Minerals, 9 (8), 473.

[3] Hora, P.I., Pati, S.G., McNamara, P.J., and Arnold, W.A., 2020, Increased use of quaternary ammonium compounds during the SARS-CoV-2 pandemic and beyond: Consideration of environmental implications, Environ. Sci. Technol. Lett., 7 (9), 622–631.

[4] Zhang, X., Kong, H., Zhang, X., Jia, H., Ma, X., Miao, H., Mu, Y., and Zhang, G., 2021, Design and production of environmentally degradable quaternary ammonium salts, Green Chem., 23 (17), 6548–6554.

[5] Qian, D., and Sun, J., 2019, Recent progress in asymmetric ion-pairing catalysis with ammonium salts, Chem. - Eur. J., 25 (15), 3740–3751.

[6] Almeida e Silva, T., Gorup, L.F., de Araújo, R.P., Fonseca, G.G., Martelli, S.M., de Oliveira, K.M.P., Faraoni, L.H., de Arruda, E.G.R., Gomes, R.A.B., da Silva, C.H.M., and de Arruda, E.J., 2020, Synergy of Biodegradable polymer coatings with quaternary ammonium salts mediating barrier function against bacterial contamination and dehydration of eggs, Food Bioprocess Technol., 13 (12), 2065–2081.

[7] Sajjan, A.M., Jeevan Kumar, B.K., Kittur, A.A., and Kariduraganavar, M.Y., 2013, Development of novel grafted hybrid PVA membranes using glycidyltrimethylammonium chloride for pervaporation separation of water–isopropanol mixtures, J. Ind. Eng. Chem., 19 (2), 427–437.

[8] Puangkaew, T., Booranabunyat, N., Kiatkamjornwong, S., Thanyasrisuung, P., and Hoven, V.P., 2022, Amphiphilic quaternized chitosan: synthesis, characterization, and anti-cariogenic biofilm property, Carbohydr. Polym., 277, 118882.

[9] Li, C., Zhao, S., Yao, X., He, L., Xu, S., Shen, X., and Yao, Z., 2022, The catalytic mechanism of intercalated chlorine anions as active basic sites in MgAl-layered double hydroxide for carbonyl sulfide hydrolysis, Environ. Sci. Pollut. Res., 29 (7), 10605–10616.

[10] Cheng, F., Yang, J., Yan, L., Zhao, J., Zhao, H., Song, H., and Chou, L., 2018, Impact of chloride ions on the oxidative coupling of methane over Li/SnO2 catalyst, React. Kinet., Mech. Catal., 125 (2), 675–688.

[11] Sekhavat Pour, Z., Makvandi, P., and Ghaemy, M., 2015, Performance properties and antibacterial activity of crosslinked films of quaternary ammonium modified starch and poly(vinyl alcohol), Int. J. Biol. Macromol., 80, 596–604.

[12] Istiningrum, R.B., Santosa, S.J., and Nuryono, N., 2021, preparation of magnetic/silica/quarternary-chitosan by sol-gel method and its stability in various pH Medium, Rasayan J. Chem., 14 (4), 2767–2775.

[13] Kang, C.K., Kim, S.S., Kim, S., Lee, J., Lee, J.H., Roh, C., and Lee, J., 2016, Antibacterial cotton fibers treated with silver nanoparticles and quaternary ammonium salts, Carbohydr. Polym., 151, 1012–1018.

[14] Sajjan, A.M., Premakshi, H.G., and Kariduraganavar, M.Y., 2015, Synthesis and characterization of GTMAC grafted chitosan membranes for the dehydration of low water content isopropanol by pervaporation, J. Ind. Eng. Chem., 25, 151–161.

[15] Kang, C., Ahn, D., Roh, C., Kim, S.S., and Lee, J., 2017, Development of synergistic antimicrobial coating of p-aramid fibers using Ag nanoparticles and glycidyltrimethylammonium chloride (GTAC) without the aid of a crosslinking agent, Polymers, 9 (8), 357.

[16] Beyler-Çiğil, A., Birtane, H., Şen, F., and Kahraman, M.V., 2021, Transparent and flexible antibacterial photocrosslinked thin films against the S. aureus and E. coli pathogen bacteria, Mater. Today Commun., 27, 102463.

[17] Taher, M.A., Omer, A.M., Hamed, A.M., Ali, A.M., Tamer, T.M., and Mohy Eldin, M.S., 2019, Development of smart alginate/chitosan grafted microcapsules for colon site-specific drug delivery, Egypt. J. Chem., 62 (6), 1037–1045.

[18] Dragan, E.S., and Dinu, M.V., 2019, Advances in porous chitosan-based composite hydrogels: synthesis and applications, React. Funct. Polym., 146, 104372.

[19] Jiang, Z., Yu, Y., and Wu, H., 2006, Preparation of CS/GPTMS hybrid molecularly imprinted membrane for efficient chiral resolution of phenylalanine isomers, J. Membr. Sci., 280 (1-2), 876–882.

[20] Boudouaia, N., Bendaoudi, A.A., Mahmoudi, H., Saffaj, T., and Bengharez, Z., 2022, Swelling and adsorption properties of crosslinked chitosan-based filmkinetic, thermodynamic and optimization studies, Desalin. Water Treat., 255, 56–67.

[21] Nawaz, A., Ullah, S., Alnuwaiser, M.A., Rehman, F.U., Selim, S., Al Jaouni, S.K., and Farid, A., 2022, Formulation and evaluation of chitosan-gelatin thermosensitive hydrogels containing 5FU-alginate nanoparticles for skin delivery, Gels, 8 (9), 537.

[22] Lewandowska, K., and Szulc, M., 2022, Rheological and film-forming properties of chitosan composites, Int. J. Mol. Sci., 23 (15), 8763.

[23] Martha, A.A., Sutarno, S., and Nuryono, N., 2022, One-pot synthesis and characterization of gold nanoparticle-embedded natural magnetic particles/chitosan composite, Solid State Phenom., 339, 11–17.

[24] Martha, A.A., Permatasari, D.I., Dewi, E.R., Wijaya, N.A., Kunarti, E.S., Rusdiarso, B., and Nuryono, N., 2022, Natural magnetic particles/chitosan impregnated with silver nanoparticles for antibacterial agents, Indones. J. Chem., 22 (3), 620–629.

[25] Karbeka, M., Koly, F.V.L., and Tellu, N.M., 2021, Characterization of magnetic content from Puntaru Beach iron sand, AIP Conf. Proc., 2349 (1), 020026.

[26] Fiejdasz, S., Gilarska, A., Horak, W., Radziszewska, A., Strączek, T., Szuwarzyński, M., Nowakowska, M., and Kapusta, C., 2021, Structurally stable hybrid magnetic materials based on natural polymers – preparation and characterization, J. Mater. Res. Technol., 15, 3149–3160.

[27] Lu, Q., Choi, K., Nam, J.D., and Choi, H.J., 2021, Magnetic polymer composite particles: Design and magnetorheology, Polymers, 13 (4), 512.

[28] Smit, M., and Lutz, M., 2020, Polymer-coated magnetic nanoparticles for the efficient capture of Mycobacterium tuberculosis (Mtb), SN Appl. Sci., 2 (10), 1658.

[29] Tao, H.C., Li, S., Zhang, L.J., Chen, Y.Z., and Deng, L.P., 2019, Magnetic chitosan/sodium alginate gel bead as a novel composite adsorbent for Cu(II) removal from aqueous solution, Environ. Geochem. Health, 41 (1), 297–308.

[30] Zhang, L., Gao, C., Wang, Z., Xie, F., Chen, Y., Meng, L., and Tang, X., 2023, Structure and properties of thermomechanically processed chitosan-based biomimetic composite materials: Effect of chitosan molecular weight, ACS Sustainable Chem. Eng., 11 (2), 708–717.

[31] Chapa González, C., Navarro Arriaga, J.U., and García Casillas, P.E., 2021, Physicochemical properties of chitosan-magnetite nanocomposite obtained with different pH, Polym. Polym. Compos., 29 (Suppl. 9), 1009–1016.

[32] Nuryono, N., Miswanda, D., Sakti, S.C.W., Rusdiarso, B., Krisbiantoro, P.A., Utami, N., Otomo, R., and Kamiya, Y., 2020, Chitosan-functionalized natural magnetic particle@silica modified with (3-chloropropyl)trimethoxysilane as a highly stable magnetic adsorbent for gold(III) ion, Mater. Chem. Phys., 255, 123507.

[33] Kono, M.C., Batu, M.S., Kedang, Y.I., and Seran, R., 2021, XRF and XRD Investigation for the results of the extraction of mud volcano from napan village into silica, JKPK, 6 (3), 317.

[34] Ramadhan, M., Fahmiati, F., Alrum, A., and La Ode Muhammad Zuhdi, M., 2023, Free solvent isolation of Fe3O4 from magnetic material iron sand utilizing high-energy ball milling as adsorben remazol turquoise blue G-133 and remazol red RB-133, Acta Chim. Asiana, 6 (1), 269–278.

[35] Prasetyowati, R., Ariswan, A., Warsono, W., and Dewi, N., 2019, Synthesis and characterization of magnetite nanoparticles (Fe3O4) based on iron sand from Glagah Kulon Progo Yogyakarta via coprecipitation method with variations in the dissolution duration, The Science and Science Education International Seminar Proceedings 2019, Yogyakarta State University, Yogyakarta, Indonesia, 27-28 September 2019, 1–7.

[36] Denison, M.I.J., Raman, S., Duraisamy, N., Thangavelu, R.M., Riyaz, S.U.M., Gunasekaran, D., and Krishnan, K., 2015, preparation, characterization and application of antibody-conjugated magnetic nanoparticles in the purification of begomovirus, RSC Adv., 5 (121), 99820–99831.

[37] Park, K.B., Choi, J., Na, T.W., Kang, J.W., Park, K., and Park, H.K., 2019, Oxygen reduction behavior of HDH TiH2 powder during dehydrogenation reaction, Metals, 9 (11), 1154.

[38] Kirana, K.H., Ghazali, M., Septiana, L.A.E.S., Fitriani, D., Agustine, E., Fajar, S.J., and Nugraha, M.G., 2020, Karakterisasi mineral magnetik sedimen sungai citarum hilir melalui analisa sifat magnetik, mineralogi serta morfologi magnetik, Positron, 10 (2), 131–139.

[39] Prasdiantika, R., and Susanto, S., 2017, Preparasi dan penentuan jenis oksida besi pada material magnetik pasir besi Lansilowo, Jurnal Teknosains, 6 (1), 7–15.

[40] Amini, M., Mousazade, Y., Zand, Z., Bagherzadeh, M., and Najafpour, M.M., 2021, Ultra-small and highly dispersive iron oxide hydroxide as an efficient catalyst for oxidation reactions: A Swiss-army-knife catalyst, Sci. Rep., 11 (1), 6642.

[41] Dhanavel, S., Mathew, S.A., and Stephen, A., 2019, “Grafted Chitosan Systems for Biomedical Applications” in Functional Chitosan: Drug Delivery and Biomedical Applications, Eds. Jana, S., and Jana, S., Springer Singapore, Singapore, 385–413.

[42] Wang, Q.Z., Chen, X.G., Liu, N., Wang, S.X., Liu, C.S., Meng, X.H., and Liu, C.G., 2006, Protonation constants of chitosan with different molecular weight and degree of deacetylation, Carbohydr. Polym., 65 (2), 194–201.

[43] Aranaz, I., Alcántara, A.R., Civera, M.C., Arias, C., Elorza, B., Heras Caballero, A., and Acosta, N., 2021, Chitosan: An overview of its properties and applications., Polymers, 13 (19), 3256.

[44] Melro, E., Antunes, F.E., da Silva, G.J., Cruz, I., Ramos, P.E., Carvalho, F., and Alves, L., 2021, Chitosan films in food applications. Tuning film properties by changing acidic dissolution conditions, Polymers, 13 (1), 1.

[45] Aslibeiki, B., Eskandarzadeh, N., Jalili, H., Ghotbi Varzaneh, A., Kameli, P., Orue, I., Chernenko, V., Hajalilou, A., Ferreira, L.P., and Cruz, M.M., 2022, Magnetic hyperthermia properties of CoFe2O4 nanoparticles: Effect of polymer coating and interparticle interactions, Ceram. Int., 48 (19, Part A), 27995–28005.

[46] Adewuyi, S., Bisiriyu, I.O., Akinremi, C.A., and Amolegbe, S.A., 2017, Synthesis, spectroscopic, surface and catalytic reactivity of chitosan supported Co(II) and its zerovalentcobalt nanobiocomposite, J. Inorg. Organomet. Polym. Mater., 27 (1), 114–121.

[47] Suyanta, S., Sutarno, S., Nuryono, N., Rusdiarso, B., Kunarti, E.S., Kusumastuti, H., and Kurnia, L., 2019, Superparamagnetic nanocomposite of magnetite-chitosan using oleic acid as anti-agglomeration and glutaraldehyde as crosslinkage agent, Indones. J. Chem., 19 (1), 133–142.

[48] Borandeh, S., Laurén, I., Teotia, A., Niskanen, J., and Seppälä, J., 2023, Dual functional quaternary chitosans with thermoresponsive behavior: Structure-activity relationships in antibacterial activity and biocompatibility, J. Mater. Chem. B, 11 (47), 11300–11309.

[49] Cho, J., Grant, J., Piquette-Miller, M., and Allen, C., 2006, Synthesis and physicochemical and dynamic mechanical properties of a water-soluble chitosan derivative as a biomaterial, Biomacromolecules, 7 (10), 2845–2855.

[50] Wang, B.M., Liu, Y., Ren, P., Xia, B., Ruan, K.B., Yi, J.B., Ding, J., Li, X.G., and Wang, L., 2011, Large exchange bias after zero-field cooling from an unmagnetized state, Phys. Rev. Lett., 106 (7), 077203.

[51] Suryani, S., Chaerunisaa, A.Y., Joni, I.M., Ruslin, R., Ramadhan, L.O., Wardhana, Y.W., and Sabarwati, S.H., 2022, Production of low molecular weight chitosan using a combination of weak acid and ultrasonication methods, Polymers, 14 (16), 3417.

[52] Wang, Y., Li, B., Zhou, Y., and Jia, D., 2009, In situ mineralization of magnetite nanoparticles in chitosan hydrogel, Nanoscale Res. Lett., 4 (9), 1041.

[53] Rahmi, R., Fathurrahmi, F., Lelifajri, L., and PurnamaWati, F., 2019, preparation of magnetic chitosan using local iron sand for mercury removal, Heliyon, 5 (5), e01731.

[54] Hao, X., Chen, N., Chen, Y., and Chen, D., 2022, Accelerated degradation of quaternary ammonium functionalized anion exchange membrane in catholyte of vanadium redox flow battery, Polym. Degrad. Stab., 197, 109864.

[55] Grząbka-Zasadzińska, A., Amietszajew, T., and Borysiak, S., 2017, Thermal and mechanical properties of chitosan nanocomposites with cellulose modified in ionic liquids, J. Therm. Anal. Calorim., 130 (1), 143–154.

[56] Sarabandi, K., and Jafari, S.M., 2020, Effect of chitosan coating on the properties of nanoliposomes loaded with flaxseed-peptide fractions: stability during spray-drying, Food Chem., 310, 125951.

[57] Tourrette, A., De Geyter, N., Jocic, D., Morent, R., Warmoeskerken, M.M.C.G., and Leys, C., 2009, Incorporation of poly(N-isopropylacrylamide)/chitosan microgel onto plasma functionalized cotton fibre surface, Colloids Surf., A, 352 (1-3), 126–135.

[58] Ardean, C., Davidescu, C.M., Nemeş, N.S., Negrea, A., Ciopec, M., Duteanu, N., Negrea, P., Duda-Seiman, D., and Musta, V., 2021, Factors influencing the antibacterial activity of chitosan and chitosan modified by functionalization, Int. J. Mol. Sci., 22 (14), 7449.

[59] Llanos, J.H.R., de Oliveira Vercik, L.C., and Vercik, A., 2015, Physical properties of chitosan films obtained after neutralization of polycation by slow drip method, J. Biomater. Nanobiotechnol., 6 (4), 276–291.

[60] Tokarčíková, M., Tokarský, J., Kutláková, K.M., and Seidlerová, J., 2017, Testing the stability of magnetic iron oxides/kaolinite nanocomposite under various pH conditions, J. Solid State Chem., 253, 329–335.

[61] Kalska-Szostko, B., Wykowska, U., Piekut, K., and Zambrzycka, E., 2013, Stability of iron (Fe) nanowires, Colloids Surf., A, 416, 66–72.



DOI: https://doi.org/10.22146/ijc.88758

Article Metrics

Abstract views : 2666 | views : 1599


Copyright (c) 2024 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.