Heavy Metal Identification in Water Resources and the Surrounding Environment of the Cirasea Riparian Zone, Indonesia

https://doi.org/10.22146/ijc.93326

Rizka Maria(1*), Ratna Dwi Puji Astuti(2), Anna Fadliah Rusydi(3), Dyah Marganingrum(4), Asep Mulyono(5), Heri Nurohman(6), Eki Naidania Dida(7), Retno Damayanti(8), Riostantieka Mayandari Shoedarto(9), Yudi Rahayudin(10), Adie Taufiqurrahman(11), Muhammad Rio Ferdiano(12), Detizca Melia Nugraha(13)

(1) Research Center for Geological Resources, National Research and Innovation Agency, Jl. Sangkuriang, Bandung 40135, Indonesia
(2) Department of Environmental Health, Faculty of Public Health, Universitas Airlangga, Campus C, Mulyorejo, Surabaya 60115, Indonesia
(3) Research Center for Limnology and Water Resources, National Research and Innovation Agency, Jl. Raya Bogor Km. 46, Cibinong 16911, Indonesia
(4) Research Center for Environmental and Clean Technology, National Research and Innovation Agency, Jl. Sangkuriang, Bandung 40135, Indonesia
(5) Research Center for Environmental and Clean Technology, National Research and Innovation Agency, Jl. Sangkuriang, Bandung 40135, Indonesia
(6) Research Center for Geological Resources, National Research and Innovation Agency, Jl. Sangkuriang, Bandung 40135, Indonesia
(7) Research Center for Geological Resources, National Research and Innovation Agency, Jl. Sangkuriang, Bandung 40135, Indonesia
(8) Research Centre for Mining Technology, Jl. Sutami Km. 15, Tanjung Bintang, Lampung Selatan 35361, Indonesia
(9) Research Center for Geological Resources, National Research and Innovation Agency, Jl. Sangkuriang, Bandung 40135, Indonesia
(10) Polytechnic of Energy and Mining, Ministry of Energy and Mineral Resources, Jl. Jend. Sudirman No. 623, Bandung 40211, Indonesia
(11) Faculty of Civil Engineering and Planning, Bandung National Institute of Technology, Jl. Khp Hasan Mustopa No. 23, Bandung 40124, Indonesia
(12) Faculty of Civil Engineering and Planning, Bandung National Institute of Technology, Jl. Khp Hasan Mustopa No. 23, Bandung 40124, Indonesia
(13) Faculty of Civil Engineering and Planning, Bandung National Institute of Technology, Jl. Khp Hasan Mustopa No. 23, Bandung 40124, Indonesia
(*) Corresponding Author

Abstract


The Cirasea River can provide water for both the Bandung basin and agricultural irrigation. Intensive agriculture, industry, and land use changes could have an impact on water quality. The purpose of this study is to look at the origins of heavy metals in riparian water resources. Heavy metal analysis was performed on 13 groundwater and river water samples. Heavy metals in water sources were compared with sediment and soil. The samples were analyzed for heavy metals using an AAS instrument. The research method employs statistical, geographical, and heavy metal pollution index (HPI). The HPI for river water was 131, whereas groundwater was 93. River water with an HPI value of more than 100 is highly polluted, indicating that it is unsafe for human consumption and has negative health consequences. Data verification with heavy metals in sediments reveals the presence of heavy metals coming from geogenic circumstances in various locations in the upstream area. Heavy metals in downstream areas result from geological factors and anthropogenic activities in the surrounding area. The long-term effects of heavy metal pollution along the riparian zone will become apparent. More research is needed on communities that depend on groundwater supplies along the Cirasea watershed.

 

 


Keywords


heavy metals; geogenic; anthropogenic; river water; groundwater

Full Text:

Full Text PDF


References

[1] Zhong, R., Zhang, Y., Duan, X., Wang, F., and Anjum, R., 2022, Heavy metals enrichment associated with water-level fluctuations in the riparian soils of the Xiaowan reservoir, Lancang River, Int. J. Environ. Res. Public Health, 19 (19), 12902.

[2] Çelebi, A., Şengörür, B., Torabi Haghighi, A., and Danandeh Mehr, A., 2024, Riparian soil pollution caused by sediment metal transport: seasonal changes and ecological risk assessment, Toxics, 12 (3), 213.

[3] Zhu, S., Dong, Z., Yang, B., Zeng, G., Liu, Y., Zhou, Y., Meng, J., Wu, S., Shao, Y., Yang, J., and Guo, X., 2022, Spatial distribution, source identification, and potential ecological risk assessment of heavy metal in surface sediments from river-reservoir system in the Feiyun River Basin, China, Int. J. Environ. Res. Public Health, 19 (22), 14944.

[4] Islam, M.S., and Mostafa, M.G., 2021, Groundwater quality and risk assessment of heavy metal pollution in middle-west part of Bangladesh, J. Earth Environ. Sci. Res., 3 (2), 1–5.

[5] Asian Development Bank, 2016, Indonesia, Country Water assessment, Asian Development Bank, Metro Manila, Philippines.

[6] Briffa, J., Sinagra, E., and Blundell, R., 2020, Heavy metal pollution in the environment and their toxicological effects on humans, Heliyon, 6 (9), e04691.

[7] Dabaibeh, R., 2021, Spatial distribution of heavy metals in Al-Zarqa, Jordan, Indones. J. Chem., 21 (2), 478–493.

[8] Huang, L., Rad, S., Xu, L., Gui, L., Song, X., Li, Y., Wu, Z., and Chen, Z., 2020, Heavy metals distribution, sources, and ecological risk assessment in Huixian wetland, South China, Water, 12 (2), 431.

[9] Astuti, R.D.P., Mallongi, A., Amiruddin, R., Hatta, M., and Rauf, A.U., 2021, Risk identification of heavy metals in well water surrounds watershed area of Pangkajene, Indonesia, Gac. Sanit., 35, S33–S37.

[10] Maria, R., Satrio, S., Iskandarsyah, T.Y.W.M., Suganda, B.R., Delinom, R.M., Marganingrum, D., Purwoko, W., Sukmayadi, D., and Hendarmawan, H., 2021, Groundwater recharge area based on hydrochemical and environmental isotopes analysis in the south Bandung volcanic area, Indones. J. Chem., 21 (3), 609–625.

[11] Shar, A.R., Shar, G.Q., Jumani, Z.A., Pathan, A.K., Bhatti, Z., Rind, A.R., and Jogi, G.M., 2022, Risk assessment of toxic metals from drinking water of Taluka Ghorābāri, Sindh, Pakistan, Indones. J. Chem., 22 (2), 468–477.

[12] Fahimah, N., Salami, I.R.S., Oginawati, K., Yapfrine, S.J., Supriatin, A., and Thaher, Y.N., 2023, Mapping and identifying heavy metals in water use as chemicals of potential concerns in upper watershed, Global J. Environ. Sci. Manage., 9 (4), 765–788.

[13] Desriyan, R., Wardhani, E., and Pharmawati, K., 2015, Identifikasi pencemaran logam berat timbal (Pb) pada perairan sungai Citarum Hulu segmen Dayeuhkolot sampai Nanjung, Jurnal Reka Lingkungan, 3 (1), 1–12.

[14] Nurysyifa, F., Kaswanto, K., and Kartodihardjo, H., 2021, The political economy of soil erosion in Cirasea sub basin, upstream Citarum basin, IOP Conf. Ser.: Earth Environ. Sci., 879 (1), 012013.

[15] Husodo, T., Wulandari, I., Abdoellah, O.S., Cahyandito, M.F., and Shanida, S.S., 2021, Impact of agricultural land changes on farmers’ income in Cirasea watershed, Bandung Regency, West Java, Indones. J. Environ. Manage. Sustainability, 5 (3), 95–104.

[16] Yenny, M.O.P., Hartono., A., Anwar, S., and Kang, Y., 2020, Assessment of heavy metals pollution in sediment of Citarum River, Indonesia, JPSL, 10 (4), 584–593.

[17] Febrita, J., and Roosmini, D., 2022, Analisis beban pencemar logam berat industri terhadap kualitas Sungai Citarum Hulu, J-SiL, 7 (1), 77–88.

[18] Handayani, C.O., Sukarjo, S., and Dewi, T, 2022, Penilaian tingkat cemaran logam berat pada lahan pertanian di Hulu Sungai Citarum, Jawa Barat, Jurnal Ilmu Lingkungan, 20 (3), 508–516.

[19] Kirana, K.H., Novala, G.C., Fitriani, D., Agustine, E., Rahmaputri, M.D., Fathurrohman, F., Rizkita, N.R., Andrianto, N., Juniarti, N., Zaenudinna, R.A., Nawawi, M.R., Mentari, V.Z., Nugraha, M.G., and Mulyadi, Y., 2019, Identifikasi kualitas air sungai Citarum Hulu melalui analisa parameter hidrologi dan kandungan logam berat (Studi kasus: Sungai Citarum Sektor 7), Wahana Fisika, 4 (2), 120–128.

[20] Wardhani, E., Rosmalina, R.T., Wulan, D.R., Dara, F., Lanang, R.N., and Irmansyah, A.Z., 2023, Assessment of heavy metal pollution status in the middle sector of the Citarum River, Int. J. GEOMATE, 25 (110), 200–207.

[21] Sudiartha, G.A.W., Oginawati, K., Sofyan, A., Ardiwinata, A., Kurnia., A., Sukarjo, S., Handayani, C., and Sulaeman, S., 2020, One-dimensional pollutant transport modelling of cadmium (Cd), chromium (Cr) and lead (Pb) in Saguling Reservoir, E3S Web Conf., 148, 07009.

[22] Sumantri, A., and Rahmani, R.Z., 2020, Analisis pencemaran kromium (VI) berdasarkan kadar chemical oxygen demand (COD) pada hulu Sungai Citarum di Kecamatan Majalaya Kabupaten Bandung Provinsi Jawa Barat, JKLI, 19 (2), 144–151.

[23] Fahimah, N., Salami, I.R.S., Oginawati, K., Susetyo, S.H., Tambun, A., Ardiwinata, A.N., and Sukarjo, S., 2023, The assessment of water quality and human health risk from pollution of chosen heavy metals in the Upstream Citarum River, Indonesia, J. Water Land Dev., 56, 153–163.

[24] Maria, R., Purwoarminta, A., and Lubis, R.F., 2019, Hidrokimia mata air karst untuk irigasi studi kasus Desa Ligarmukti, Kabupaten Bogor, Jurnal Irigasi, 13 (1), 1–10.

[25] Rusli, S.R., Weerts, A.H., Taufiq, A., and Bense, V.F, 2021, Estimating water balance components and their uncertainty bounds in highly groundwater-dependent and data-scarce area: An example for the Upper Citarum basin, J. Hydrol.: Reg. Stud., 37, 100911.

[26] PSDA, 2020, Daily Precipitation of Citarum Watershed, Annual Report Dataset, accessed on November 10, 2023

[27] Indonesian Geospatial Information Agency, 2019, Indonesian Landform Map Scale 1:25,000, https://tanahair.indonesia.go.id/portal-web/downloadpetacetak?skala=25K, accessed on December 2, 2023.

[28] Bronto, S., Koswara, A., and Lumbanbatu, K., 2006, Stratigrafi gunung api daerah Bandung Selatan, Jawa Barat, Indones. J. Geosci., 1 (2), 89–101.

[29] BPS, 2023, Kabupaten Bandung Dalam Angka, BPS Statistics of Bandung Regency, Bandung, Indonesia.

[30] Bachri, S., Akbar, N., and Alzwar, M., 1992, Geological Map of the Garut and Pameungpeuk Quadrangle, Java, Pusat Penelitian dan Pengembangan Geologi, Bandung, Indonesia.

[31] Khan, Y.K., Toqeer, M., and Shah, M.H., 2021, Spatial distribution, pollution characterization and health risk assessment of selected metals in groundwater of Lahore, Pakistan, Geochemistry, 81 (1), 125692.

[32] Ohio-EPA, 2010, Guidance on Evaluating Sediment Contaminant Results, Standards and Technical Support Section, Division of Surface Water, Ohio Environmental Protection Agency Columbus, Ohio, US.

[33] Gaikwad, S., Gaikwad, S., Meshram, D., Wagh, V., Kandekar, A., and Kadam, A., 2020, Geochemical mobility of ions in groundwater from the tropical western coast of Maharashtra, India: Implication to groundwater quality, Environ., Dev. Sustainability, 22 (3), 2591–2624.

[34] Rakotondrabe, F., Ndam Ngoupayou, J.R., Mfonka, Z., Rasolomanana, E.H., Nyangono Abolo, A.J., and Ako Ako, A., 2018, Water quality assessment in the Bétaré-Oya gold mining area (East-Cameroon): Multivariate statistical analysis approach, Sci. Total Environ., 610-611, 831–844.

[35] Rahman, M., Tushar, M.A.N., Zahid, A., Mustafa, M.G., Siddique, M.A.M., and Ahmed, K.M., 2021, Spatial distribution of manganese in groundwater and associated human health risk in the southern part of the Bengal Basin, Environ. Sci. Pollut. Res., 28 (30), 41061–41070.

[36] Haque, M.M., Niloy, N.M., Nayna, O.K., Fatema, K.J., Quraishi, S.B., Park, J.H., Kim, K.W., and Tareq, S.M., 2020, Variability of water quality and metal pollution index in the Ganges River, Bangladesh, Environ. Sci. Pollut. Res., 27 (34), 42582–42599.

[37] Kwaya, M.Y., Hamidu, H., Mohammed, A.I., Abdulmumini, Y.N., Adamu, I.H., Grema, H.M., Dauda, M., Halilu, F.B., and Kana, A.M., 2019, Heavy metals pollution indices and multivariate statistical evaluation of groundwater quality of Maru town and environs, J. Mater. Environ. Sci., 10 (1), 32–44.

[38] Mallongi, A., Rauf, A.U., Daud, A., Hatta, M., Al-Madhoun, W., Amiruddin, R., Stang, S., Wahyu, A., and Astuti, R.D.P., 2022, Health risk assessment of potentially toxic elements in Maros karst groundwater: A Monte Carlo simulation approach, Geomatics, Nat. Hazards Risk, 13 (1), 338–363.

[39] Chaturvedi, A., Bhattacharjee, S., Mondal, G.C., Kumar, V., Singh, P.K., and Singh, A.K., 2019, Exploring new correlation between hazard index and heavy metal pollution index in groundwater, Ecol. Indic., 97, 239–246.

[40] Mahato, M.K., Singh, G., Singh, P.K., Singh, A.K., and Tiwari, A.K, 2017, Assessment of mine water quality using heavy metal pollution index in a coal mining area of Damodar River Basin, India, Bull. Environ. Contam. Toxicol., 99 (1), 54–61.

[41] Okafor, V.N., Omokpariola, D.O., Obumselu, O.F., and Eze, C.G., 2023, Exposure risk to heavy metals through surface and groundwater used for drinking and household activities in Ifite Ogwari, Southeastern Nigeria, Appl. Water Sci., 13 (4), 105.

[42] Sobhan Ardakani, S., Yari, A.R., Taghavi, L., and Tayebi, L, 2016, Water quality pollution indices to assess the heavy metal contamination, case study: Groundwater resources of Asadabad Plain in 2012, Arch. Hyg. Sci., 5 (4), 50–57.

[43] Ministry of Health of the Republic of Indonesia, 2023, Regulation of the Minister of Health of the Republic of Indonesia NO. 2 BN.2023/No. 55.

[44] El-Rawy, M., Ismail, E., and Abdalla, O., 2019, Assessment of groundwater quality using GIS, hydrogeochemistry, and factor statistical analysis in Qena governorate, Egypt, Desalin. Water Treat., 162, 14–29.

[45] Król, A., Mizerna, K., and Bożym, M., 2020, An assessment of pH-dependent release and mobility of heavy metals from metallurgical slag, J. Hazard. Mater., 384, 121502.

[46] Baraka, A., Ogweyo, G.N.I., and Abuto, E., 2022, An assessment on water quality (TDS, EC, ORP, and pH) of selected boreholes in Baraton centre, JQHE, 5 (1), 000259.

[47] Sawyer, C.N., McCarty, P.L., and Parkin, G.F., 1994, Chemistry for Environmental Engineering, 4th Ed., McGraw-Hill, New York, US.

[48] Račys, V., Kliučininkas, L., Jankūnaitė, D., and Albrektienė, R., 2017, Application of ORP for the evaluation of water contamination, Linnaeus ECO-TECH ´10, Kalmar, Sweden, November 22-24, 2010, 1082–1089.

[49] Kamble, R., 2020, Source of groundwater iron and manganese in Chandrapur district, central India, Holistic Approach Environ., 10 (3), 53–72.

[50] Eldaw, E., Huang, T., Elubid, B., Khalifa Mahamed, A., and Mahama, Y., 2020, A novel approach for indexing heavy metals pollution to assess groundwater quality for drinking purposes, Int. J. Environ. Res. Public Health, 17 (4), 1245.

[51] Yona, D., Fuad, M.A.Z., and Hidayati, N., 2018, Spatial distribution of heavy metals in the surface sediments of the southern coast of Pacitan, Indonesia, Indones. J. Chem., 18 (1), 137–144.

[52] Radiation and health (RAD) and Water, Sanitation, Hygiene and Health (WSH), 2017, Guidelines for Drinkingwater Quality, Fourth Edition Incorporating the First Addendum, World Health Organization, Geneva, Switzerland.

[53] Okereafor, U., Makhatha, M., Mekuto, L., Uche-Okereafor, N., Sebola, T., and Mavumengwana, V., 2020, Toxic metal implications on agricultural soils, plants, animals, aquatic life and human health, Int. J. Environ. Res. Public Health, 17 (7), 2204.

[54] Li, X., Zhang, J., Gong, Y., Liu, Q., Yang, S., Ma, J., Zhao, L., and Hou, H, 2020, Status of copper accumulation in agricultural soils across China (1985–2016), Chemosphere, 244, 125516.

[55] Panagos, P., Ballabio, C., Lugato, E., Jones, A., Borrelli, P., Scarpa, S., Orgiazzi, A., and Montanarella, L., 2018, Potential sources of anthropogenic copper inputs to European agricultural soils, Sustainability, 10 (7), 2380.

[56] Fadlillah, L.N., Utami, S., Rachmawati, A.A., Jayanto, G.D., and Widyastuti, M., 2023, Ecological risk and source identifications of heavy metals contamination in the water and surface sediments from anthropogenic impacts of urban river, Indonesia, Heliyon, 9 (4), e15485.

[57] Ahamad, M.I., Yao, Z., Ren, L., Zhang, C., Li, T., Lu, H., Mehmood, M.S., Rehman, A., Adil, M., Lu, S., and Feng, W, 2024, Impact of heavy metals on aquatic life and human health: A case study of River Ravi Pakistan, Front. Mar. Sci., 11, 1374835.

[58] Kubier, A., Wilkin, R.T., and Pichler, T., 2019, Cadmium in soils and groundwater: A review, Appl. Geochem., 108, 104388.

[59] Astuti, D., Awang, N., Othman, M.S.B., Kamaludin, N.F.B., Meng, C.K., and Mutalazimah, M., 2023, Analysis of heavy metals concentration in textile wastewater in batik industry center, JPPIPA, 9 (3), 1176–1181.

[60] Huang, Z., Liu, C., Zhao, X., Dong, J., and Zheng, B., 2020, Risk assessment of heavy metals in the surface sediment at the drinking water source of the Xiangjiang River in South China, Environ. Sci. Eur., 32 (1), 23.

[61] Soltani-Gerdefaramarzi, S., Ghasemi, M., and Ghanbarian, B., 2021, Geogenic and anthropogenic sources identification and ecological risk assessment of heavy metals in the urban soil of Yazd, central Iran, PLoS One, 16 (11), e0260418.

[62] Hu, M., Zhou, P., and Chen, C., 2022, Spatial and temporal distribution and affecting factors of iron and manganese in the groundwater in the middle area of the Yangtze River Basin, China, Environ. Sci. Pollut. Res., 29 (40), 61204–61221.

[63] Matta, G., Kumar, A., Kumar, A., Naik, P.K., Kumar, A., and Srivastava, N., 2018, Assessment of heavy metals toxicity and ecological impact on surface water quality using HPI in Ganga River, INAE Lett., 3 (3), 123–129.



DOI: https://doi.org/10.22146/ijc.93326

Article Metrics

Abstract views : 3213 | views : 1130


Copyright (c) 2024 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.