Fabrication of NiFe2O4/SiO2/TiO2 Magnetic Composite for Effective Photodegradation of Congo Red Dye

Poedji Loekitowati Hariani(1*), Salni Salni(2), Melviana Violetta Kimur(3), Nurlisa Hidayati(4), Elfita Elfita(5)
(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Jl. Palembang Prabumulih Km. 32, Ogan Ilir 30662, Indonesia; Research Group on Magnetic Materials, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Jl. Palembang Prabumulih Km. 32, Ogan Ilir 30662, Indonesia
(2) Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Jl. Palembang Prabumulih Km. 32, Ogan Ilir 30662, Indonesia
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Jl. Palembang Prabumulih Km. 32, Ogan Ilir 30662, Indonesia
(4) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Jl. Palembang Prabumulih Km. 32, Ogan Ilir 30662, Indonesia
(5) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Jl. Palembang Prabumulih Km. 32, Ogan Ilir 30662, Indonesia
(*) Corresponding Author
Abstract
This study aims to fabricate a NiFe2O4/SiO2/TiO2 magnetic composite to serve as a photocatalyst for the degradation of Congo red dye. The catalyst characterization involved XRD, FTIR, UV-vis DRS, BET, VSM, SEM-EDS, and pHpzc analyses. The performance in degradation was determined by the effect of various variables, including solution pH, dye concentration, and irradiation time. Results revealed that the NiFe2O4/SiO2/TiO2 composite exhibited a crystallite size of 24.56 nm and a bandgap of 2.1 eV. The surface area of NiFe2O4/SiO2/TiO2 was measured at 154 m2/g, exceeding that of NiFe2O4/SiO2 and NiFe2O4, which were observed at 122 and 51 m2/g, respectively. NiFe2O4/SiO2/TiO2 exhibited magnetic properties with a magnetic saturation of 18.55 emu/g. Under optimal conditions (pH 5, initial dye concentration of 20 mg/L, and 90 min of visible irradiation), the degradation efficiency reached 96.86%. It was concluded that the photodegradation was effective, as its efficiency decreased from 96.86 to 92.45% after five reuse cycles. The presence of mineralization was evaluated using total organic carbon analysis, which revealed an 84.60% reduction in carbon content.
Keywords
Full Text:
Full Text PDFReferences
[1] Pang, X., Sellaoui, L., Franco, D., Dotto, G.L., Georgin, J., Bajahzar, A., Belmabrouk, H., Ben Lamine, A., Bonilla-Petriciolet, A., and Li, Z., 2019, Adsorption of crystal violet on biomasses from pecan nutshell, para chestnut husk, araucaria bark and palm cactus: Experimental study and theoretical modelling via monolayer and double layer statistical physics models, Chem. Eng. J., 378, 122101.
[2] Li, Z., Sellaoui, L., Dotto, G.L., Lamine, A.B., Bonilla-Petriciolet, A., Hanafy, H., Belmabrouk, H., Netto, M.S., and Erto, A., 2019, Interpretation of the adsorption mechanism of Reactive Black 5 and Ponceau 4R dyes on chitosan/polyamide nanofibers via advanced statistical physics model, J. Mol. Liq., 285, 165–170.
[3] Chen, F., Wu, X., Bu, R., and Yang, F., 2017, Co–Fe hydrotalcites for efficient removal of dye pollutants via synergistic adsorption and degradation, RSC Adv., 7 (66), 41945–41954.
[4] Ali, N., Said, A., Ali, F., Razig, F., Ali, Z., Bilal, M., Reinert, L., Begum, T., and Igbal, H.M.N., 2020, Photocatalytic degradation of Congo red dye from aqueous environment using cobalt ferrite nanostructures: Development, characterization, and photocatalytic performance, Water Air Soil Pollut., 231 (2), 50.
[5] Aziz, A., Ali, N., Khan, A., Bilal, M., Malik, S., Ali, N., and Khan, H., 2020, Chitosan‑zinc sulfide nanoparticles, characterization and their photocatalytic degradation efficiency for azo dyes, Int. J. Biol. Macromol., 153, 502–512.
[6] Zhou, Y., Ge, L., Fan, N., and Xia, M., 2018, Adsorption of Congo red from aqueous solution onto shrimp shell powder, Adsorpt. Sci. Technol., 36 (5-6), 1310–1330.
[7] Khan, S., Khan, A., Ali, N., Ahmad., S., Ahmad, W., Malik, S., Ali, N., Shah, S., and Bilal, M., 2021, Degradation of Congo red dye using ternary metal selenide-chitosan microspheres as robust and reusable catalysts, Environ. Technol. Innovation, 22, 101402.
[8] Wagner, M., Eicheler, C., Helmreich, B., Hilbig, H., and Heinz, D., 2020, Removal of Congo red from aqueous solutions at hardened cement paste surfaces, Front. Mater., 7, 567130.
[9] Yahya, N., Aziz, F., Jamaludin, N.A., Mutalib, M.A., Ismail, A.F., Salleh, W.N.W., Jaafar, J., Yusof, N., and Ludin, N.A., 2018, A review of integrated photocatalyst adsorbents for wastewater treatment, J. Environ. Chem. Eng., 6 (6), 7411–7425.
[10] Li, Y., Meas, A., Shan, S., Yang, R., and Gai, X., 2016, Production and optimization of bamboo hydrochars for adsorption of Congo red and 2-naphthol, Bioresour. Technol., 207, 379–386.
[11] Wang, R., Liu, Y., Lu, Y., Liang, S., Zhang, Y., Zhang, J., Shi, R., and Yin, W., 2023, Fabrication of a corn stalk derived cellulose-based bio-adsorbent to remove Congo red from wastewater: Investigation on its ultra-high adsorption performance and mechanism, Int. J. Biol. Macromol., 241, 124545.
[12] Mcyotto, F., Wei, Q., Macharia, D.K., Huang, M., Shen, C., and Chow, C.W.K., 2021, Effect of dye structure on color removal efficiency by coagulation, Chem. Eng. J., 405, 126674.
[13] Torres, N.H., Souza, B.S., Ferreira, L.F.R., Lima, A.S., dos Santos, G.N., and Cavalcanti, E.B., 2019, Real textile effluents treatment using coagulation/flocculation followed by electrochemical oxidation process and ecotoxicological assessment, Chemosphere, 236, 124309.
[14] Meerbergen, K., Willems, K.A., Dewil, R., Van Impe, J., and Lievens, B., 2018, Isolation and screening of bacterial isolates from wastewater treatment plants to decolorize azo dyes, J. Biosci. Bioeng., 125 (4), 448–456.
[15] Fu, L., Shuang, C., Liu, F., Li, A., Li, Y., Zhou, Y., and Song, H., 2014, Shuang rapid removal of copper with magnetic poly-acrylic weak acid resin: Quantitative role of bead radius on ion exchange, J. Hazard. Mater., 272, 102–111.
[16] Argote-Fuentes, S., Feria-Reyes, R., Ramos-Ramírez, E., Gutiérrez-Ortega, N., and Cruz-Jiménez, G., 2021, Photoelectrocatalytic degradation of Congo red dye with activated hydrotalcites and copper anode, Catalysts, 11 (2), 211.
[17] Sohni, S., Gul, K., Ahmad, F., Ahmad, I., Khan, A., Khan, N., and Bahadar Khan, S., 2018, Highly efficient removal of Acid red-17 and Bromophenol blue dyes from industrial wastewater using graphene oxide functionalized magnetic chitosan composite, Polym. Compos., 39 (9), 3317–3328.
[18] Benamira, M., Lahmar, H., Messaadia, L., Rekhila, G., Akika, F.Z., Himrane, M., and Trari, M., 2020, Hydrogen production on the new hetero-system Pr2NiO4/SnO2 under visible light irradiation, Int. J. Hydrogen Energy, 45 (3), 1719–1728.
[19] Lahmar, H., Benamira, M., Douafer, S., Akika, F.Z., Hamdi, M., Avramova, I., and Trari, M., 2020, Photocatalytic degradation of crystal violet dye on the novel CuCr2O4/SnO2 hetero-system under sunlight, Optik, 219, 165042.
[20] Motahari, F., Mozdianfard, M.R., Soofivand, F., and Salavati-Niasari, M., 2014, NiO nanostructures: synthesis, characterization and photocatalyst application in dye wastewater treatment, RSC Adv., 4 (53), 27654–27660.
[21] Wang, Y.S., Shen, J.H., and Horng, J.J., 2014, Chromate enhanced visible light driven TiO2 photocatalytic mechanism on Acid Orange 7 photodegradation, J. Hazard. Mater., 274, 420–427.
[22] Starukh, G., 2017, Photocatalytically enhanced cationic dye removal with Zn-Al layered double hydroxides, Nanoscale Res. Lett., 12 (1), 391.
[23] Janczarek, M., and Kowalska, E., 2017, On the origin of enhanced photocatalytic activity of copper-modified titania in the oxidative reaction systems, Catalysts, 7 (11), 317.
[24] Zhong, Z., Etim, U.J., and Song, Y., 2020, Improving the Cu/ZnO-based catalysts for carbon dioxide hydrogenation to methanol, and the use of methanol as a renewable energy storage media, Front. Energy Res., 8, 545431.
[25] Bejtka, K., Zeng, J., Sacco, A., Castellino, M., Hernández, S., Farkhondehfal, M.A., Savino, U., Ansaloni, S., Pirri, C.F., and Chiodoni, A., 2019, Chainlike mesoporous SnO2 as a well-performing catalyst for electrochemical CO2 reduction, ACS Appl. Energy Mater., 2 (5), 3081–3091.
[26] Zhuang, H., Bai, S., Liu, X., and Yan, Z., 2010, Structure and performance of Cu/ZrO2 catalyst for the synthesis of methanol from CO2 hydrogenation, J. Fuel Chem. Technol., 38 (4), 462–467.
[27] Gurram, V.R.B., Enumula, S.S., Mutyala, S., Pocharmoni, R., Prasad, P.S.S., Burri, D.R., and Kamraju, S.R.R., 2016, The advantage of ceria loading over V2O5/Al2O3 catalyst for vapor phase oxidative dehydrogenation of ethylbenzene to styrene using CO2 as a soft oxidant, Appl. Petrochem. Res., 6 (4), 427–437.
[28] Pattnaik, S.P., Behera, A., Acharya, R., and Parida, K., 2019, Green exfoliation of graphitic carbon nitride towards decolourization of Congo-red under solar irradiation, J. Environ. Chem. Eng., 7 (6), 103456.
[29] Moreira, N.F.F., Sousa, J.M., Macedo, G., Ribeiro, A.R., Barreiros, L., Pedrosa, M., Faria, J.L., Pereira, M.F.R., Castro-Silva, S., Segundo, M.A., Manaia, C.M., Nunes, O.C., and Silva, A.M.T., 2016, Photocatalytic ozonation of urban wastewater and surface water using immobilized TiO2 with LEDs: Micropollutants, antibiotic resistance genes and estrogenic activity, Water Res., 94, 10–22.
[30] Tumbelaka, R.M., Istiqomah, N.I., Kato, T., Oshima, D., and Suharyadi, E., 2022, High reusability of green-synthesized Fe3O4/TiO2 photocatalyst nanoparticles for efficient degradation of methylene blue dye, Mater. Today Commun., 33, 104450.
[31] Shayegan, Z., Lee, C.S., and Haghighat, F., 2018, TiO2 photocatalyst for removal of volatile organic compounds in gas phase – A review, Chem. Eng. J., 334, 2408–2439.
[32] Gebrezgiabher, M., Gebreslassie, G., Gebretsadik, T., Yeabyo, G., Elemo, F., Bayeh, Y., Thomas, M., and Linert, W., 2019, A C-doped TiO2/Fe3O4 nanocomposite for photocatalytic dye degradation under natural sunlight irradiation, J. Compos. Sci., 3 (3), 75.
[33] Gabelica, I., Ćurković, L., Mandić, V., Panžić, I., Ljubas, D., and Zadro, K., 2021, Rapid microwave-assisted synthesis of Fe3O4/SiO2/TiO2 core-2-layer-shell nanocomposite for photocatalytic degradation of ciprofloxacin, Catalysts, 11 (10), 1136.
[34] Zhang, Y., Shi, Z., Luo, L., Liu, Z., Macharia, D.K., Duoerkun, G., Shen, C., Liu, J., and Zhang, L., 2020, Construction of titanium dioxide/cadmium sulfide heterojunction on carbon fibers as weavable photocatalyst for eliminating various contaminants, J. Colloid Interface Sci., 561, 307–317.
[35] Boulahbel, H., Benamira, M., Bouremmad, F., Ahmia, N., Kiamouche, S., Lahmar, H., Souici, A., and Trari, M., 2023, Enhanced photodegradation of Congo red dye under sunlight irradiation by p-n NiFe2O4/TiO2 heterostructure, Inorg. Chem. Commun., 154, 110921.
[36] Hariani, P.L., Said, M., Rachmat, A., Riyanti, F., Pratiwi, H.C., and Rizki, W.T., 2022, Preparation of NiFe2O4 nanoparticles by solution combustion method as photocatalyst of Congo red, Bull. Chem. React. Eng. Catal., 16 (3), 481–490.
[37] Verdi, I.R., Maroli Neto, A.J., Garcia, I.S.G., Lenzi, G.G., Villetti, M.A., Alves, O.C., Fidelis, M.Z., da Rocha, R.D.C., and Brackmann, R., 2024, Magnetic NiFe2O4/TiO2 heterostructures for the photocatalytic decontamination of glyphosate in water, Mater. Sci. Semicond. Process., 174, 108205.
[38] Wang, W., Zhang, L., Liu, Z., Kang, L., Chen, Q., Wang, W., Liu, M., Ye, B.C., Yu, F., and Li, Y., 2022, Visible-light-activated TiO2–NiFe2O4 heterojunction for detecting sub-ppm trimethylamine, J. Alloys Compd., 898, 162990.
[39] Magdalane, C.M., Priyadharsini, G.M.A., Kaviyarasu, K., Jothi, A.I., and Simiyon, G.G., 2021, Synthesis and characterization of TiO2 doped cobalt ferrite nanoparticles via microwave method: Investigation of photocatalytic performance of Congo red degradation dye, Surf. Interfaces, 25, 101296.
[40] Coromelci, C., Neamtu, M., Ignat, M., Samoila, P., Zaltariov, M.F., and Palamaru, M., 2022, Ultrasound assisted synthesis of heterostructured TiO2/ZnFe2O4 and TiO2/ZnFe1.98La002O4 systems as tunable photocatalysts for efficient organic pollutants removal, Ceram. Int., 48 (4), 4829–4840.
[41] Xia, Y., He, Z., Lu, Y., Tang, B., Sun, S., Su, J., and Li, X., 2018, Fabrication and photocatalytic property of magnetic SrTiO3/NiFe2O4 heterojunction nanocomposites, RSC. Adv., 8 (10), 5441–5450.
[42] Sivakumar, P., Ramesh, R., Ramanand, A., Ponnusamy, S., and Muthamizhchelvan, C., 2013, Synthesis and characterization of NiFe2O4 nanoparticles and nanorods, J. Alloys Compd., 563, 6–11.
[43] Hariani, P.L., Said, M., Rachmat, A., Salni, S., Aprianti, N., and Amatullah, A.F., 2022, Synthesis of NiFe2O4/SiO2/NiO magnetic and application for the photocatalytic degradation of Methyl orange dye under UV irradiation, Bull. Chem. React. Eng. Catal., 17 (4), 699–711.
[44] Alwared, A.I., Sulaiman, F.A., Raad, H., Al-Musawi, T.J., and Mohammed, N.A., 2023, Ability of FeNi3/SiO2/TiO2 nanocomposite to degrade amoxicillin in wastewater samples in solar light-driven processes, S. Afr. J. Bot., 153, 195–202.
[45] Yulizar, Y., Apriandanu, D.O.B., and Zahra, Z.A., 2021, SiO2/NiFe2O4 nanocomposites: Synthesis, characterization and their catalytic activity for 4-nitroaniline reduction, Mater. Chem. Phys., 261, 124243.
[46] Czempik, A., Grasset, F., Auguste, S., Rousseau, A., Kubacki, J., Sobol, T., Szczepanik, M., Randrianantoandro, N., and Bajorek, A., 2024, Unraveling the effect of annealing on the structural and microstructural evolution of NiFe2O4@SiO2 core-shell type nanocomposites, Ceram. Int., 50 (11, Part B), 20473–20494.
[47] Naseri, A., Goodarzi, M., and Ghanbari, D., 2017, Green synthesis and characterization of magnetic and effective photocatalyst NiFe2O4–NiO nanocomposites, J. Mater. Sci.: Mater. Electron., 28 (23), 17635–17646.
[48] Castro-Beltrán, A., Luque, P.A., Garrafa-Gálvez, H.E., Vargas-Ortiz, R.A., Hurtado-Macías, A., Olivas, A., Almaral-Sánchez, J.L., and Alvarado-Beltrán, C.G., 2018, Titanium butoxide molar ratio effect in the TiO2 nanoparticles size and Methylene blue degradation, Optik, 157, 890–894.
[49] Kumar, D., and Gupta, S.K., 2023, Green synthesis of novel biochar from Abelmoschus esculentus seeds for direct blue 86 dye removal: Characterization, RSM optimization, isotherms, kinetics, and fixed bed column studies, Environ. Pollut., 337, 122559.
[50] Hariani, P.L., Said, M., Salni, S., Aprianti, N., and Naibaho, Y.A.L.R., 2022, High efficient photocatalytic degradation of Methyl orange dye in an aqueous solution by CoFe2O4-SiO2-TiO2 magnetic catalyst, J. Ecol. Eng., 23 (1), 118–128.
[51] Kunarti, E.S., Roto, R., Pradipta, A.R., and Budi, I.S., 2017, Fe3O4/SiO2/TiO2 core-shell nanoparticles as catalyst for photoreduction of Ag(I) ions, Orient. J. Chem., 33 (4), 1933–1940.
[52] Han, K.H., Kim, Y.H., Pak, I.H., Yu, J.H., Ho, I.C., and Han, R.H., 2022, Fe3O4@SiO2@TiO2@PDA nanocomposite for the degradation of organic materials, Chem. Eng. Technol., 45 (1), 178–188.
[53] Praveen, P., Viruthagiri, G., Mugundan, S., and Shanmugam, N., 2014, Structural, optical and morphological analyses of pristine titanium di-oxide nanoparticles – Synthesized via sol–gel route, Spectrochim. Acta, Part A, 117, 622–629.
[54] Cathrin Lims, S., Divya, S., and Jose, M., 2023, Design of CuO@SiO2 core shell nanocomposites and its applications to photocatalytic degradation of Rhodamine B dye, Opt. Mater., 144, 114356.
[55] Zielińska-Jurek, A., Bielan, Z., Dudziak, S., Wolak, I., Sobczak, Z., Klimczuk, T., Nowaczyk, G., and Hupka, J., 2017, Design and application of magnetic photocatalysts for water treatment. The effect of particle charge on surface functionality, Catalyst, 7 (12), 360.
[56] Chand, K., Jiao, C., Lakhan, M.N., Shah, A.H., Kumar, V., Fouad, D.E., Chandio, M.B., Ali Maitlo, A., Ahmed, M., and Cao, D., 2021, Green synthesis, characterization and photocatalytic activity of silver nanoparticles synthesized with Nigella sativa seed extract, Chem. Phys. Lett., 763, 138218.
[57] Alavi, S.A., Nasseri, M.A., Kazemnejadi, M., Allahresani, A., and HussainZadeh, M., 2021, NiFe2O4@SiO2@ZrO2/SO42−/Cu/Co nanoparticles: a novel, efficient, magnetically recyclable and bimetallic catalyst for Pd-free Suzuki, Heck and C–N cross-coupling reactions in aqueous media, New J. Chem., 45 (17), 7741–7751.
[58] Lafi, R., Montasser, I., and Hafiane, A., 2018, Adsorption of Congo red dye from aqueous solutions by prepared activated carbon with oxygen-containing functional groups and its regeneration, Adsorp. Sci. Technol., 37 (1-2), 160–181.
[59] Li, Y., Li, J., Pan, Y., Xiong, Z., Yao, G., Xie, R., and Lai, B., 2020, Peroxymonosulfate activation on FeCo2S4 modified g-C3N4 (FeCo2S4-CN): Mechanism of singlet oxygen evolution for nonradical efficient degradation of sulfamethoxazole, Chem. Eng. J., 384, 123361.
[60] Adeel, M., Saeed, M., Khan, I., Muneer, M., and Akram, N., 2021, Synthesis and characterization of Co–ZnO and evaluation of its photocatalytic activity for photodegradation of methyl orange, ACS Omega, 6 (2), 1426–1435.
[61] Ammar, S.H., Ibrahim Elaibi, A., and Sh. Mohammed, I., 2020, Core/shell Fe3O4@Al2O3-PMo magnetic nanocatalyst for photocatalytic degradation of organic pollutants in an internal loop airlift reactor, J. Water Process Eng., 37, 101240.
[62] Jo, W.K., Kumar, S., Isaacs, M.A., Lee, A.F., and Karthikeyan, S., 2017, Cobalt promoted TiO2/GO for the photocatalytic degradation of oxytetracycline and Congo red, Appl. Catal., B, 201, 159–168.
[63] Shekardasht, M.B., Givianrad, M.H., Gharbani, P., Mirjafary, Z., and Mehrizad, A., 2020, Preparation of a novel Z-scheme g-C3N4/RGO/Bi2Fe4O9 nanophotocatalyst for degradation of Congo red dye under visible light, Diamond Relat. Mater., 109, 108008.
[64] Zhu, L., Kong, X., Yang, C., Ren, B., and Tang, Q., 2020, Fabrication and characterization of the magnetic separation photocatalyst CTiO2@Fe3O4/AC with enhanced photocatalytic performance under visible light irradiation, J. Hazard. Mater., 381, 120910.
[65] Indira, K., Shanmugam, S., Hari, A., Vasantharaj, S., Sathiyavimal, S., Brindhadevi, K., El Askary, A., Elfasakhany, A., and Pugazhendhi, A., 2021, Photocatalytic degradation of Congo red dye using nickel–titanium dioxide nanoflakes synthesized by Mukia madrasapatna leaf extract, Environ. Res., 202, 111647.
[66] Langa, C., Tetana, Z.N., and Hinstsho-Mbita, N.C., 2023, Effect of calcination temperature on the synthesis of TiO2 nanoparticles from Sutherlandia frutescence for the degradation of Congo red dye and antibiotics ciproflaxin and sulfamethoxazole, Chem. Phys. Impact, 7, 100389.
[67] Hokonya, N., Mahamadi, C., Mukaratirwa-Muchanyereyi, N., Gutu, T., and Zvinowanda, C., 2022, Green synthesis of P-ZrO2CeO2ZnO nanoparticles using leaf extracts of Flacourtia indica and their application for the photocatalytic degradation of a model toxic dye, Congo red, Heliyon, 8 (8), e10277.
[68] Dash, L., Biswas, R., Ghost, R., Kaur, V., Banerjee, B., Sen, T., Patil, R.A., Ma, Y.R., and Haldar, K.K., 2020, Fabrication of mesoporous titanium dioxide using Azadirachta indica leaves extract towards visible-light-driven photocatalytic dye degradation, J. Photochem. Photobiol., A, 400, 112682.
[69] Abassi, A., Abushad, M., Khan, A., Bhat, Z.U.H., Hanif, S., and Shakir, M., 2023, Bare undoped nontoxic carbon dots as a visible light photocatalyst for the degradation of methylene blue and Congo red, Carbon Trends, 10, 100238.
[70] Chen, D., Xu, X., Lei, P., Ge, J., Tong, Y., Huang, C., and Fu, X., 2023, One-pot solvothermal assembly of CeO2/Ce-BiOBr hollow microsphere heterojunctions for efficient degradation of Congo red driven by visible LED light irradiation, Colloids Surf., A, 672, 131751.
[71] Ichipi, E.O., Mapossa, A.B., Costa, A.C.F.M., Chirwa, E.M.N., and Tichapondwa, S.M., 2023, Fabrication and characterization of recyclable, magnetic (CoFe2O4)x/Ag2S-ZnO composites for visible-light-induced photocatalytic degradation of methylene blue dye, J. Water Process Eng., 54, 104040.

Article Metrics


Copyright (c) 2025 Indonesian Journal of Chemistry

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.