Mismatch Negativity (MMN): Komponen Event-Related Potentials (ERP) sebagai Penanda Aktivitas Otomatis Otak dalam Mendeteksi Perubahan
Abstract
Keywords
DOI: 10.22146/buletinpsikologi.74437
References
Akatsuka, K., Wasaka, T., Nakata, H., Inui, K., Hoshiyama, M., & Kakigi, R. (2005). Mismatch responses related to temporal discrimination of somatosensory stimulation. Clinical Neurophysiology, 116(8), 1930–1937. https://doi.org/10.1016/J.CLINPH.2005.04.021
Akatsuka, K., Wasaka, T., Nakata, H., Kida, T., Hoshiyama, M., Tamura, Y., & Kakigi, R. (2007). Objective examination for two-point stimulation using a somatosensory oddball paradigm: an MEG study. Clinical Neurophysiology : Official Journal of the International Federation of Clinical Neurophysiology, 118(2), 403–411. https://doi.org/10.1016/J.CLINPH.2006.09.030
Aleksandrov, A. A., Memetova, K. S., Stankevich, L. N., Knyazeva, V. M., & Shtyrov, Y. (2020). Referent’s Lexical Frequency Predicts Mismatch Negativity Responses to New Words Following Semantic Training. Journal of Psycholinguistic Research, 49(2), 187–198. https://doi.org/10.1007/s10936-019-09678-3
Alho, K., Sainio, K., Sajaniemi, N., Reinikainen, K., & Näätänen, R. (1990). Event-related brain potential of human newborns to pitch change of an acoustic stimulus. Electroencephalography and Clinical Neurophysiology/ Evoked Potentials, 77(2), 151–155. https://doi.org/10.1016/0168-5597(90)90031-8
Alho, Kimmo, Woods, D. L., Algazi, A., & Näätänen, R. (1992). Intermodal selective attention. II. Effects of attentional load on processing of auditory and visual stimuli in central space. Electroencephalography and Clinical Neurophysiology, 82(5), 356–368. https://doi.org/10.1016/0013-4694(92)90005-3
Arndt, C., Schlemmer, K., & van der Meer, E. (2020). Same or different pitch? Effects of musical expertise, pitch difference, and auditory task on the pitch discrimination ability of musicians and non-musicians. Experimental Brain Research, 238(1), 247–258. https://doi.org/10.1007/s00221-019-05707-8
Baldeweg, T., Richardson, A., Watkins, S., Foale, C., & Gruzelier, J. (1999). Impaired auditory frequency discrimination in dyslexia detected with mismatch evoked potentials. Annals of Neurology, 45(4), 495–503. https://doi.org/10.1002/1531-8249(199904)45:4<495::AID-ANA11>3.0.CO;2-M
Bartha-Doering, L., Deuster, D., Giordano, V., Am Zehnhoff-Dinnesen, A., & Dobel, C. (2015). A systematic review of the mismatch negativity as an index for auditory sensory memory: From basic research to clinical and developmental perspectives. Psychophysiology, 52(9), 1115–1130. https://doi.org/10.1111/psyp.12459
Beck, A.-K., Berti, S., Czernochowski, D., & Lachmann, T. (2021). Do categorical representations modulate early automatic visual processing? A visual mismatch-negativity study. Biological Psychology, 163, 108139. https://doi.org/10.1016/j.biopsycho.2021.108139
Bhat, A., Irizar, H., Thygesen, J. H., Kuchenbaecker, K., Pain, O., Adams, R. A., Zartaloudi, E., Harju-Seppänen, J., Austin-Zimmerman, I., Wang, B., Muir, R., Summerfelt, A., Du, X. M., Bruce, H., O’Donnell, P., Srivastava, D. P., Friston, K., Hong, L. E., Hall, M.-H., & Bramon, E. (2021). Transcriptome-wide association study reveals two genes that influence mismatch negativity. Cell Reports, 34(11), 108868. https://doi.org/10.1016/j.celrep.2021.108868
Bissonnette, J. N., Francis, A. M., Hull, K. M., Leckey, J., Pimer, L., Berrigan, L. I., & Fisher, D. J. (2020). MMN-Indexed Auditory Change Detection in Major Depressive Disorder. Clinical EEG and Neuroscience, 51(6), 365–372. https://doi.org/10.1177/1550059420914200
Bonetti, L., Haumann, N. T., Vuust, P., Kliuchko, M., & Brattico, E. (2017). Risk of depression enhances auditory Pitch discrimination in the brain as indexed by the mismatch negativity. Clinical Neurophysiology, 128(10), 1923–1936. https://doi.org/10.1016/j.clinph.2017.07.004
Böttcher-Gandor, C., Ullsperger, P., Bottcher-Gandor, C., Ullsperger, P., Böttcher-Gandor, C., & Ullsperger, P. (1992). Mismatch Negativity in Event-Related Potentials to Auditory Stimuli as a Function of Varying Interstimulus Interval. Psychophysiology, 29(5), 546–550. https://doi.org/10.1111/j.1469-8986.1992.tb02028.x
Bötzel, K., Schulze, S., & Stodieck, S. G. (1995). Scalp topography and analysis of intracranial sources of face-evoked potentials. Experimental Brain Research, 104(1). https://doi.org/10.1007/BF00229863
Brunellière, A., Dufour, S., & Nguyen, N. (2011). Regional differences in the listener’s phonemic inventory affect semantic processing: A mismatch negativity (MMN) study. Brain and Language, 117(1), 45–51. https://doi.org/10.1016/j.bandl.2010.12.004
Casado, A., & Brunellière, A. (2016). The influence of sex information into spoken words: a mismatch negativity (MMN) study. Brain Research, 1650, 73–83. https://doi.org/10.1016/j.brainres.2016.08.039
Chen, C., Chan, C.-W., & Cheng, Y. (2018). Test–Retest Reliability of Mismatch Negativity (MMN) to Emotional Voices. Frontiers in Human Neuroscience, 12. https://doi.org/10.3389/fnhum.2018.00453
Chen, T.-C., Hsieh, M. H., Lin, Y.-T., Chan, P.-Y. S., & Cheng, C.-H. (2020). Mismatch negativity to different deviant changes in autism spectrum disorders: A meta-analysis. Clinical Neurophysiology, 131(3), 766–777. https://doi.org/10.1016/j.clinph.2019.10.031
Cohen, D. (1972). Magnetoencephalography: Detection of the Brain’s Electrical Activity with a Superconducting Magnetometer. Science, 175(4022), 664–666. https://doi.org/10.1126/science.175.4022.664
Cornell, S. A., Lahiri, A., & Eulitz, C. (2013). Inequality across consonantal contrasts in speech perception: Evidence from mismatch negativity. Journal of Experimental Psychology: Human Perception and Performance, 39(3), 757–772. https://doi.org/10.1037/a0030862
Crespo-Bojorque, P., Monte-Ordoño, J., & Toro, J. M. (2018). Early neural responses underlie advantages for consonance over dissonance. Neuropsychologia, 117, 188–198. https://doi.org/10.1016/j.neuropsychologia.2018.06.005
Csépe, V., Karmos, G., & Molnár, M. (1987). Evoked potential correlates of stimulus deviance during wakefulness and sleep in cat - animal model of mismatch negativity. Electroencephalography and Clinical Neurophysiology, 66(6), 571–578. https://doi.org/10.1016/0013-4694(87)90103-9
Cummings, A., Wu, Y. C., & Ogiela, D. A. (2021). Phonological Underspecification: An Explanation for How a Rake Can Become Awake. Frontiers in Human Neuroscience, 15(February), 1–18. https://doi.org/10.3389/fnhum.2021.585817
Deng, N., Sun, Y., Chen, X., & Li, W. (2022). How does self name influence the neural processing of emotional prosody? An ERP study. PsyCh Journal, 11(1), 30–42. https://doi.org/10.1002/pchj.499
Ding, X., Chen, Y., Liu, Y., Zhao, J., & Liu, J. (2022). The automatic detection of unexpected emotion and neutral body postures: A visual mismatch negativity study. Neuropsychologia, 164, 108108. https://doi.org/10.1016/j.neuropsychologia.2021.108108
Donaldson, K. R., Larsen, E. M., Jonas, K., Tramazzo, S., Perlman, G., Foti, D., Mohanty, A., & Kotov, R. (2021). Mismatch negativity amplitude in first-degree relatives of individuals with psychotic disorders: Links with cognition and schizotypy. Schizophrenia Research, 238, 161–169. https://doi.org/10.1016/j.schres.2021.10.006
Eimer, M. (2011). The Face-Sensitivity of the N170 Component. Frontiers in Human Neuroscience, 5. https://doi.org/10.3389/fnhum.2011.00119
Engström, E., Kallioinen, P., Nakeva von Mentzer, C., Lindgren, M., Sahlén, B., Lyxell, B., Ors, M., & Uhlén, I. (2021). Auditory event-related potentials and mismatch negativity in children with hearing loss using hearing aids or cochlear implants – A three-year follow-up study. International Journal of Pediatric Otorhinolaryngology, 140, 110519. https://doi.org/10.1016/j.ijporl.2020.110519
Eulitz, C., & Lahiri, A. (2004). Neurobiological evidence for abstract phonological representations in the mental lexicon during speech recognition. Journal of Cognitive Neuroscience, 16(4), 577–583. https://doi.org/10.1162/089892904323057308
Fan, L., Sun, Y. Bin, Sun, Z. K., Wang, N., Luo, F., Yu, F., & Wang, J. Y. (2018). Modulation of auditory sensory memory by chronic clinical pain and acute experimental pain: a mismatch negativity study. Scientific Reports 2018 8:1, 8(1), 1–13. https://doi.org/10.1038/s41598-018-34099-y
Fernandes, N. M., Gil, D., & Azevedo, M. F. de. (2019). Mismatch Negativity in Children with Cochlear Implant. International Archives of Otorhinolaryngology, 23(03), e292–e298. https://doi.org/10.1055/s-0039-1688967
Fischer, C., Luauté, J., Némoz, C., Morlet, D., Kirkorian, G., & Mauguière, F. (2006). Improved prediction of awakening or nonawakening from severe anoxic coma using tree-based classification analysis. Critical Care Medicine, 34(5), 1520–1524. https://doi.org/10.1097/01.CCM.0000215823.36344.99
Fisher, D. J., Grant, B., Smith, D. M., & Knott, V. J. (2011). Effects of deviant probability on the ‘optimal’ multi-feature mismatch negativity (MMN) paradigm. International Journal of Psychophysiology, 79(2), 311–315. https://doi.org/10.1016/j.ijpsycho.2010.11.006
Fisher, D. J., Scott, T. L., Shah, D. K., Prise, S., Thompson, M., & Knott, V. J. (2010). Light up and see: Enhancement of the visual mismatch negativity (vMMN) by nicotine. Brain Research, 1313, 162–171. https://doi.org/10.1016/j.brainres.2009.12.002
Fishman, Y. I., Volkov, I. O., Noh, M. D., Garell, P. C., Bakken, H., Arezzo, J. C., Howard, M. A., & Steinschneider, M. (2001). Consonance and Dissonance of Musical Chords: Neural Correlates in Auditory Cortex of Monkeys and Humans. Journal of Neurophysiology, 86(6), 2761–2788. https://doi.org/10.1152/jn.2001.86.6.2761
Fitzgerald, K., & Todd, J. (2020). Making Sense of Mismatch Negativity. Frontiers in Psychiatry, 11(June), 1–19. https://doi.org/10.3389/fpsyt.2020.00468
Franken, I. H. A., Nijs, I., & Van Strien, J. W. (2005). Impulsivity affects mismatch negativity (MMN) measures of preattentive auditory processing. Biological Psychology, 70(3), 161–167. https://doi.org/10.1016/j.biopsycho.2005.01.007
Frey, A., François, C., Chobert, J., Velay, J.-L., Habib, M., & Besson, M. (2019). Music Training Positively Influences the Preattentive Perception of Voice Onset Time in Children with Dyslexia: A Longitudinal Study. Brain Sciences, 9(4), 91. https://doi.org/10.3390/brainsci9040091
Friston, K. (2003). Learning and inference in the brain. Neural Networks, 16(9), 1325–1352. https://doi.org/10.1016/j.neunet.2003.06.005
Friston, K. (2005). A theory of cortical responses. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1456), 815–836. https://doi.org/10.1098/rstb.2005.1622
Fucci, E., Abdoun, O., Caclin, A., Francis, A., Dunne, J. D., Ricard, M., Davidson, R. J., & Lutz, A. (2018). Differential effects of non-dual and focused attention meditations on the formation of automatic perceptual habits in expert practitioners. Neuropsychologia, 119, 92–100. https://doi.org/10.1016/j.neuropsychologia.2018.07.025
Fucci, Enrico, Poublan-Couzardot, A., Abdoun, O., & Lutz, A. (2022). No effect of focused attention and open monitoring meditation on EEG auditory mismatch negativity in expert and novice practitioners. International Journal of Psychophysiology, 176, 62–72. https://doi.org/10.1016/j.ijpsycho.2022.03.010
Garami, L., Ragó, A., Honbolygó, F., & Csépe, V. (2017). Lexical influence on stress processing in a fixed-stress language. International Journal of Psychophysiology, 117, 10–16. https://doi.org/10.1016/j.ijpsycho.2017.03.006
Garrido, M. I., Kilner, J. M., Stephan, K. E., & Friston, K. J. (2009). The mismatch negativity: A review of underlying mechanisms. Clinical Neurophysiology, 120(3), 453–463. https://doi.org/10.1016/j.clinph.2008.11.029
Giard, M.-H., Perrin, F., Pernier, J., & Bouchet, P. (1990). Brain Generators Implicated in the Processing of Auditory Stimulus Deviance: A Topographic Event-Related Potential Study. Psychophysiology, 27(6), 627–640. https://doi.org/10.1111/j.1469-8986.1990.tb03184.x
Greber, M., Rogenmoser, L., Elmer, S., & Jäncke, L. (2018). Electrophysiological Correlates of Absolute Pitch in a Passive Auditory Oddball Paradigm: a Direct Replication Attempt. Eneuro, 5(6), ENEURO.0333-18.2018. https://doi.org/10.1523/ENEURO.0333-18.2018
Green, H. L., Shuffrey, L. C., Levinson, L., Shen, G., Avery, T., Randazzo Wagner, M., Sepulveda, D. M., Garcia, P., Maddox, C., Garcia, F., Hassan, S., & Froud, K. (2020). Evaluation of mismatch negativity as a marker for language impairment in autism spectrum disorder. Journal of Communication Disorders, 87, 105997. https://doi.org/10.1016/j.jcomdis.2020.105997
Groppe, D. M., Urbach, T. P., & Kutas, M. (2011). Mass univariate analysis of event-related brain potentials/fields I: A critical tutorial review. Psychophysiology, 48(12), 1711–1725. https://doi.org/10.1111/j.1469-8986.2011.01273.x
Gu, C., & Bi, H.-Y. (2020). Auditory processing deficit in individuals with dyslexia: A meta-analysis of mismatch negativity. Neuroscience & Biobehavioral Reviews, 116, 396–405. https://doi.org/10.1016/j.neubiorev.2020.06.032
Hanna, J., Cappelle, B., & Pulvermüller, F. (2017). Spread the word: MMN brain response reveals whole-form access of discontinuous particle verbs. Brain and Language, 175, 86–98. https://doi.org/10.1016/j.bandl.2017.10.002
He, X., Liu, W., Qin, N., Lyu, L., Dong, X., & Bao, M. (2021). Performance‐dependent reward hurts performance: The non‐monotonic attentional load modulation on task‐irrelevant distractor processing. Psychophysiology, 58(12). https://doi.org/10.1111/psyp.13920
He, X., Zhang, J., Zhang, Z., Go, R., Wu, J., Li, C., Gan, K., & Chen, D. (2020). Effects of Visual Attentional Load on the Tactile Sensory Memory Indexed by Somatosensory Mismatch Negativity. Frontiers in Neuroinformatics, 14. https://doi.org/10.3389/fninf.2020.575078
Hestvik, A., & Durvasula, K. (2016). Neurobiological evidence for voicing underspecification in English. Brain and Language, 152, 28–43. https://doi.org/10.1016/j.bandl.2015.10.007
Hestvik, A., Shinohara, Y., Durvasula, K., Verdonschot, R. G., & Sakai, H. (2020). Abstractness of human speech sound representations. Brain Research, 1732, 146664. https://doi.org/10.1016/J.BRAINRES.2020.146664
Higgins, A., Lewandowski, K. E., Liukasemsarn, S., & Hall, M.-H. (2021). Longitudinal relationships between mismatch negativity, cognitive performance, and real-world functioning in early psychosis. Schizophrenia Research, 228, 385–393. https://doi.org/10.1016/j.schres.2021.01.009
Hjorth, B. (1970). EEG analysis based on time domain properties. Electroencephalography and Clinical Neurophysiology, 29(3), 306–310. https://doi.org/10.1016/0013-4694(70)90143-4
Honbolygó, F., Kóbor, A., German, B., & Csépe, V. (2020). Word stress representations are language-specific: Evidence from event-related brain potentials. Psychophysiology, 57(5), 1–12. https://doi.org/10.1111/psyp.13541
Honbolygó, F., Kolozsvári, O., & Csépe, V. (2017). Processing of word stress related acoustic information : A multi-feature MMN study. International Journal of Psychophysiology, 118(0), 9–17. https://jyx.jyu.fi/handle/123456789/54259
Houlihan, M., & Stelmack, R. M. (2012). Mental ability and mismatch negativity: Pre-attentive discrimination of abstract feature conjunctions in auditory sequences. Intelligence, 40(3), 239–244. https://doi.org/10.1016/j.intell.2012.02.003
Jääskeläinen, I. P., Ahveninen, J., Bonmassar, G., Dale, A. M., Ilmoniemi, R. J., Levänen, S., Lin, F.-H., May, P., Melcher, J., Stufflebeam, S., Tiitinen, H., & Belliveau, J. W. (2004). Human posterior auditory cortex gates novel sounds to consciousness. Proceedings of the National Academy of Sciences, 101(17), 6809–6814. https://doi.org/10.1073/pnas.0303760101
Jääskeläinen, I. P., Hautamäki, M., Näätänen, R., & Ilmoniemi, R. J. (1999). Temporal span of human echoic memory and mismatch negativity: revisited. NeuroReport, 10(6). https://journals.lww.com/neuroreport/Fulltext/1999/04260/Temporal_span_of_human_echoic_memory_and_mismatch.28.aspx
Jarkiewicz, M., & Wichniak, A. (2015). Can new paradigms bring new perspectives for mismatch negativity studies in schizophrenia? Neuropsychiatric Electrophysiology, 1(1), 1–16. https://doi.org/10.1186/S40810-015-0010-Z/TABLES/1
Kappenman, E. S., Farrens, J. L., Zhang, W., Stewart, A. X., & Luck, S. J. (2021). ERP CORE: An open resource for human event-related potential research. NeuroImage, 225(October 2020), 117465. https://doi.org/10.1016/j.neuroimage.2020.117465
Kekoni, J., Hämäläinen, H., Saarinen, M., Gröhn, J., Reinikainen, K., Lehtokoski, A., & Näätänen, R. (1997). Rate effect and mismatch responses in the somatosensory system: ERP-recordings in humans. Biological Psychology, 46(2), 125–142. https://doi.org/10.1016/S0301-0511(97)05249-6
Khakim, Z., & Kusrohmaniah, S. (2021). Dasar - Dasar Electroencephalography (EEG) bagi Riset Psikologi. Buletin Psikologi, 29(1), 92. https://doi.org/10.22146/buletinpsikologi.52328
Kim, S., Baek, J. H., Shim, S., Kwon, Y. J., Lee, H. Y., Yoo, J. H., & Kim, J. S. (2020). Mismatch negativity indices and functional outcomes in unipolar and bipolar depression. Scientific Reports, 10(1), 12831. https://doi.org/10.1038/s41598-020-69776-4
Kirihara, K., Tada, M., Koshiyama, D., Fujioka, M., Usui, K., Araki, T., & Kasai, K. (2020). A Predictive Coding Perspective on Mismatch Negativity Impairment in Schizophrenia. Frontiers in Psychiatry, 11, 660. https://doi.org/10.3389/FPSYT.2020.00660/BIBTEX
Kliuchko, M., Brattico, E., Gold, B. P., Tervaniemi, M., Bogert, B., Toiviainen, P., & Vuust, P. (2019). Fractionating auditory priors: A neural dissociation between active and passive experience of musical sounds. PLOS ONE, 14(5), e0216499. https://doi.org/10.1371/journal.pone.0216499
Kliuchko, M., Heinonen-Guzejev, M., Vuust, P., Tervaniemi, M., & Brattico, E. (2016). A window into the brain mechanisms associated with noise sensitivity. Scientific Reports 2016 6:1, 6(1), 1–9. https://doi.org/10.1038/srep39236
Koshiyama, D., Kirihara, K., Tada, M., Nagai, T., Fujioka, M., Usui, K., Araki, T., & Kasai, K. (2020). Reduced Auditory Mismatch Negativity Reflects Impaired Deviance Detection in Schizophrenia. Schizophrenia Bulletin, 46(4), 937–946. https://doi.org/10.1093/SCHBUL/SBAA006
Kostilainen, K., Wikström, V., Pakarinen, S., Videman, M., Karlsson, L., Keskinen, M., Scheinin, N. M., Karlsson, H., & Huotilainen, M. (2018). Healthy full-term infants’ brain responses to emotionally and linguistically relevant sounds using a multi-feature mismatch negativity (MMN) paradigm. Neuroscience Letters, 670, 110–115. https://doi.org/10.1016/J.NEULET.2018.01.039
Kotzor, S., Wetterlin, A., & Lahiri, A. (2017). Symmetry or asymmetry: Evidence for underspecification in the mental lexicon. The Speech Processing Lexicon, 85–106. https://doi.org/10.1515/9783110422658-005/HTML
Kremláček, J., Kuba, M., Kubová, Z., & Langrová, J. (2006). Visual mismatch negativity elicited by magnocellular system activation. Vision Research, 46(4), 485–490. https://doi.org/10.1016/j.visres.2005.10.001
Kremláček, Jan, Kreegipuu, K., Tales, A., Astikainen, P., Põldver, N., Näätänen, R., & Stefanics, G. (2016). Visual mismatch negativity (vMMN): A review and meta-analysis of studies in psychiatric and neurological disorders. Cortex, 80, 76–112. https://doi.org/10.1016/j.cortex.2016.03.017
Kujala, T., Kuuluvainen, S., Saalasti, S., Jansson-Verkasalo, E., Wendt, L. von, & Lepistö, T. (2010). Speech-feature discrimination in children with Asperger syndrome as determined with the multi-feature mismatch negativity paradigm. Clinical Neurophysiology, 121(9), 1410–1419. https://doi.org/10.1016/j.clinph.2010.03.017
Kujala, Teija, Tervaniemi, M., & Schröger, E. (2007). The mismatch negativity in cognitive and clinical neuroscience: Theoretical and methodological considerations. Biological Psychology, 74(1), 1–19. https://doi.org/10.1016/j.biopsycho.2006.06.001
Kuuluvainen, S., Alku, P., Makkonen, T., Lipsanen, J., & Kujala, T. (2016). Cortical speech and non-speech discrimination in relation to cognitive measures in preschool children. European Journal of Neuroscience, 43(6), 738–750. https://doi.org/10.1111/ejn.13141
Lahiri, A., & Reetz, H. (2002). Underspecified recognition. In C. Gussenhoven & N. Warner (Eds.), Laboratory Phonology 7 (pp. 637–676).
Lahiri, A., & Reetz, H. (2010). Distinctive features: Phonological underspecification in representation and processing. Journal of Phonetics, 38(1), 44–59. https://doi.org/10.1016/j.wocn.2010.01.002
Lappe, C., Lappe, M., & Pantev, C. (2016). Differential processing of melodic, rhythmic and simple tone deviations in musicians -an MEG study. NeuroImage, 124, 898–905. https://doi.org/10.1016/j.neuroimage.2015.09.059
Lindström, R., Lepistö-Paisley, T., Makkonen, T., Reinvall, O., Nieminen-von Wendt, T., Alén, R., & Kujala, T. (2018). Atypical perceptual and neural processing of emotional prosodic changes in children with autism spectrum disorders. Clinical Neurophysiology, 129(11), 2411–2420. https://doi.org/10.1016/j.clinph.2018.08.018
Luck, S. J. (2012). Event-related potentials. In APA handbook of research methods in psychology, Vol 1: Foundations, planning, measures, and psychometrics. (pp. 523–546). American Psychological Association. https://doi.org/10.1037/13619-028
Luck, S. J. (2014). An introduction to the event-related potential technique. MIT Press.
Luck, S. J., & Kappenman, E. (2011). Oxford handbook of ERP. In The Oxford Handbook of Management Information Systems: Critical Perspectives and New Directions (Issue September). http://www.scopus.com/inward/record.url?eid=2-s2.0-84924891367&partnerID=40&md5=08a0b6d6a450f2679201578f06244a52
Luck, S. J., Kappenman, E. S., Fuller, R. L., Robinson, B., Summerfelt, A., & Gold, J. M. (2009). Impaired response selection in schizophrenia: Evidence from the P3 wave and the lateralized readiness potential. Psychophysiology, 46(4), 776–786. https://doi.org/10.1111/j.1469-8986.2009.00817.x
Marhl, U., Jodko-Władzińska, A., Brühl, R., Sander, T., & Jazbinšek, V. (2022). Transforming and comparing data between standard SQUID and OPM-MEG systems. PLOS ONE, 17(1), e0262669. https://doi.org/10.1371/journal.pone.0262669
Mathias, B., Lidji, P., Honing, H., Palmer, C., & Peretz, I. (2016). Electrical Brain Responses to Beat Irregularities in Two Cases of Beat Deafness. Frontiers in Neuroscience, 10. https://doi.org/10.3389/fnins.2016.00040
McDermott, J. H., Schultz, A. F., Undurraga, E. A., & Godoy, R. A. (2016). Indifference to dissonance in native Amazonians reveals cultural variation in music perception. Nature, 535(7613), 547–550. https://doi.org/10.1038/NATURE18635
Menzel, C., Kovács, G., Amado, C., Hayn-Leichsenring, G. U., & Redies, C. (2018). Visual mismatch negativity indicates automatic, task-independent detection of artistic image composition in abstract artworks. Biological Psychology, 136, 76–86. https://doi.org/10.1016/j.biopsycho.2018.05.005
Näätänen, R. (2003). Mismatch negativity: Clinical research and possible applications. International Journal of Psychophysiology, 48(2), 179–188. https://doi.org/10.1016/S0167-8760(03)00053-9
Näätänen, R., & Gaillard, A. W. K. (1983). The Orienting Reflex and the N2 Deflection of the Event-Related Potential (ERP). Advances in Psychology, 10(C), 119–141. https://doi.org/10.1016/S0166-4115(08)62036-1
Näätänen, R., Gaillard, A. W. K., & Mäntysalo, S. (1978). Early selective-attention effect on evoked potential reinterpreted. Acta Psychologica, 42(4), 313–329. https://doi.org/10.1016/0001-6918(78)90006-9
Näätänen, R., Jacobsen, T., & Winkler, I. (2005). Memory-based or afferent processes in mismatch negativity (MMN): A review of the evidence. Psychophysiology, 42(1), 25–32. https://doi.org/10.1111/j.1469-8986.2005.00256.x
Näätänen, R., & Kreegipuu, K. (2011). The Mismatch Negativity (MMN). In E. S. Kappenman & S. J. Luck (Eds.), The Oxford Handbook of Event-Related Potential Components. Oxford University Press. https://doi.org/10.1093/oxfordhb/9780195374148.013.0081
Näätänen, R., Lehtokoskl, A., Lennest, M., Cheour, M., Huotilainen, M., Valnlot, M., Alku, P., Risto, J., Luuk, A., Alllk, J., Slnkkonen, J., & Alho, K. (1997). Language-specific phoneme representations revealed by electric and magnetic brain responses. 38(January), 2–4.
Näätänen, R., Paavilainen, P., Rinne, T., & Alho, K. (2007). The mismatch negativity (MMN) in basic research of central auditory processing: A review. Clinical Neurophysiology, 118(12), 2544–2590. https://doi.org/10.1016/j.clinph.2007.04.026
Näätänen, R., Pakarinen, S., Rinne, T., & Takegata, R. (2004). The mismatch negativity (MMN): Towards the optimal paradigm. Clinical Neurophysiology, 115(1), 140–144. https://doi.org/10.1016/j.clinph.2003.04.001
Näätänen, R., Petersen, B., Torppa, R., Lonka, E., & Vuust, P. (2017). The MMN as a viable and objective marker of auditory development in CI users. Hearing Research, 353, 57–75. https://doi.org/10.1016/j.heares.2017.07.007
Näätänen, R., & Picton, T. (1987). The N1 Wave of the Human Electric and Magnetic Response to Sound: A Review and an Analysis of the Component Structure. In Psychophysiology (Vol. 24, Issue 4, pp. 375–425).
Näätänen, R., Shiga, T., Asano, S., & Yabe, H. (2015). Mismatch negativity (MMN) deficiency: A break-through biomarker in predicting psychosis onset. International Journal of Psychophysiology, 95(3), 338–344. https://doi.org/10.1016/j.ijpsycho.2014.12.012
Nan, Y., Huang, W., Wang, W., Liu, C., & Dong, Q. (2016). Subgroup differences in the lexical tone mismatch negativity (MMN) among Mandarin speakers with congenital amusia. Biological Psychology, 113, 59–67. https://doi.org/10.1016/j.biopsycho.2015.11.010
Niemitalo-Haapola, E., Lapinlampi, S., Kujala, T., Alku, P., Kujala, T., Suominen, K., & Jansson-Verkasalo, E. (2013). Linguistic multi-feature paradigm as an eligible measure of central auditory processing and novelty detection in 2-year-old children. Http://Dx.Doi.Org/10.1080/17588928.2013.781146, 4(2), 99–106. https://doi.org/10.1080/17588928.2013.781146
Pakarinen, S., Lohilahti, J., Sokka, L., Korpela, J., Huotilainen, M., & Müller, K. (2021). Auditory deviance detection and involuntary attention allocation in occupational burnout—A follow‐up study. European Journal of Neuroscience. https://doi.org/10.1111/ejn.15429
Pakarinen, S., Lovio, R., Huotilainen, M., Alku, P., Näätänen, R., & Kujala, T. (2009). Fast multi-feature paradigm for recording several mismatch negativities (MMNs) to phonetic and acoustic changes in speech sounds. Biological Psychology, 82(3), 219–226. https://doi.org/10.1016/j.biopsycho.2009.07.008
Pakarinen, S., Takegata, R., Rinne, T., Huotilainen, M., & Näätänen, R. (2007). Measurement of extensive auditory discrimination profiles using the mismatch negativity (MMN) of the auditory event-related potential (ERP). Clinical Neurophysiology, 118(1), 177–185. https://doi.org/10.1016/j.clinph.2006.09.001
Partanen, E., Kivimäki, R., Huotilainen, M., Ylinen, S., & Tervaniemi, M. (2022). Musical perceptual skills, but not neural auditory processing, are associated with better reading ability in childhood. Neuropsychologia, 169, 108189. https://doi.org/10.1016/j.neuropsychologia.2022.108189
Partanen, E., Vainio, M., Kujala, T., & Huotilainen, M. (2011). Linguistic multifeature MMN paradigm for extensive recording of auditory discrimination profiles. Psychophysiology, 48(10), 1372–1380. https://doi.org/10.1111/J.1469-8986.2011.01214.X
Pazo-Alvarez, P., Cadaveira, F., & Amenedo, E. (2003). MMN in the visual modality: A review. Biological Psychology, 63(3), 199–236. https://doi.org/10.1016/S0301-0511(03)00049-8
Peter, V., Mcarthur, G., & Thompson, W. F. (2012). Discrimination of stress in speech and music: A mismatch negativity (MMN) study. Psychophysiology, 49(12), 1590–1600. https://doi.org/10.1111/j.1469-8986.2012.01472.x
Petrosino, R., Almeida, Diogo, Calabrese, A., Sprouse, &, & Jon. (2021). Social cognition categories impact early auditory processing: asymmetrical mismatch negativities to socially-marked biological sounds. https://robpetrosino.github.io/publication/mmns/
Plumridge, J. M. A., Barham, M. P., Foley, D. L., Ware, A. T., Clark, G. M., Albein-Urios, N., Hayden, M. J., & Lum, J. A. G. (2020). The Effect of Visual Articulatory Information on the Neural Correlates of Non-native Speech Sound Discrimination. Frontiers in Human Neuroscience, 14. https://doi.org/10.3389/fnhum.2020.00025
Pulvermüller, F., & Shtyrov, Y. (2003). Automatic processing of grammar in the human brain as revealed by the mismatch negativity. NeuroImage, 20(1), 159–172. https://doi.org/10.1016/S1053-8119(03)00261-1
Pulvermüller, F., Shtyrov, Y., Hasting, A. S., & Carlyon, R. P. (2008). Syntax as a reflex: Neurophysiological evidence for early automaticity of grammatical processing. Brain and Language, 104(3), 244–253. https://doi.org/10.1016/j.bandl.2007.05.002
Putkinen, V., Huotilainen, M., & Tervaniemi, M. (2019). Neural Encoding of Pitch Direction Is Enhanced in Musically Trained Children and Is Related to Reading Skills. Frontiers in Psychology, 10. https://doi.org/10.3389/fpsyg.2019.01475
Putkinen, V., Makkonen, T., & Eerola, T. (2017). Music-induced positive mood broadens the scope of auditory attention. Social Cognitive and Affective Neuroscience, 12(7), 1159–1168. https://doi.org/10.1093/scan/nsx038
Putkinen, V., Tervaniemi, M., & Huotilainen, M. (2019). Musical playschool activities are linked to faster auditory development during preschool-age: a longitudinal ERP study. Scientific Reports, 9(1), 11310. https://doi.org/10.1038/s41598-019-47467-z
Quiroga‐Martinez, D. R., C. Hansen, N., Højlund, A., Pearce, M., Brattico, E., & Vuust, P. (2020). Musical prediction error responses similarly reduced by predictive uncertainty in musicians and non‐musicians. European Journal of Neuroscience, 51(11), 2250–2269. https://doi.org/10.1111/ejn.14667
Rachman, L., Dubal, S., & Aucouturier, J.-J. (2019). Happy you, happy me: expressive changes on a stranger’s voice recruit faster implicit processes than self-produced expressions. Social Cognitive and Affective Neuroscience, 14(5), 559–568. https://doi.org/10.1093/scan/nsz030
Riedinger, M., Nagels, A., Werth, A., & Scharinger, M. (2021). Asymmetries in Accessing Vowel Representations Are Driven by Phonological and Acoustic Properties: Neural and Behavioral Evidence From Natural German Minimal Pairs. Frontiers in Human Neuroscience, 15. https://doi.org/10.3389/fnhum.2021.612345
Rinne, T., Alho, K., Ilmoniemi, R. J., Virtanen, J., & Näätänen, R. (2000). Separate Time Behaviors of the Temporal and Frontal Mismatch Negativity Sources. NeuroImage, 12(1), 14–19. https://doi.org/10.1006/nimg.2000.0591
Saarikivi, K., Putkinen, V., Tervaniemi, M., & Huotilainen, M. (2016). Cognitive flexibility modulates maturation and music-training-related changes in neural sound discrimination. European Journal of Neuroscience, 44(2), 1815–1825. https://doi.org/10.1111/ejn.13176
Sabri, M., & Campbell, K. B. (2001). Effects of sequential and temporal probability of deviant occurrence on mismatch negativity. Cognitive Brain Research, 12(1), 171–180. https://doi.org/10.1016/S0926-6410(01)00026-X
Sams, M, Hämäläinen, M., Antervo, A., Kaukoranta, E., Reinikainen, K., & Hari, R. (1985). Cerebral neuromagnetic responses evoked by short auditory stimuli. Electroencephalography and Clinical Neurophysiology, 61(4), 254–266. https://doi.org/10.1016/0013-4694(85)91092-2
Sams, Mikko, Hari, R., Rif, J., & Knuutila, J. (1993). The human auditory sensory memory trace persists about 10 sec: Neuromagnetic evidence. Journal of Cognitive Neuroscience, 5(3), 363–370. https://doi.org/10.1162/jocn.1993.5.3.363
Sato, Y., Yabe, H., Hiruma, T., Sutoh, T., Shinozaki, N., Nashida, T., & Kaneko, S. (2000). The effect of deviant stimulus probability on the human mismatch process. NeuroReport, 11(17), 3703–3708. https://doi.org/10.1097/00001756-200011270-00023
Schulte-Körne, G., Deimel, W., Bartling, J., & Remschmidt, H. (1998). Auditory processing and dyslexia. NeuroReport, 9(2), 337–340. https://doi.org/10.1097/00001756-199801260-00029
Schwartz, S., Shinn-Cunningham, B., & Tager-Flusberg, H. (2018). Meta-analysis and systematic review of the literature characterizing auditory mismatch negativity in individuals with autism. Neuroscience & Biobehavioral Reviews, 87, 106–117. https://doi.org/10.1016/j.neubiorev.2018.01.008
Sethares, W. (2005). The Gamelan. In Tuning, Timbre, Spectrum, Scale (pp. 199–220). Springer-Verlag. https://doi.org/10.1007/1-84628-113-X_10
Shen, G., Meltzoff, A. N., Weiss, S. M., & Marshall, P. J. (2020). Body representation in infants: Categorical boundaries of body parts as assessed by somatosensory mismatch negativity. Developmental Cognitive Neuroscience, 44, 100795. https://doi.org/10.1016/j.dcn.2020.100795
Shen, G., Weiss, S. M., Meltzoff, A. N., & Marshall, P. J. (2018). The somatosensory mismatch negativity as a window into body representations in infancy. International Journal of Psychophysiology, 134, 144–150. https://doi.org/10.1016/j.ijpsycho.2018.10.013
Singh, S. (2014). Magnetoencephalography: Basic principles. Annals of Indian Academy of Neurology, 17(5), 107. https://doi.org/10.4103/0972-2327.128676
Spackman, L. A., Towell, A., & Boyd, S. G. (2010). Somatosensory discrimination: An intracranial event-related potential study of children with refractory epilepsy. Brain Research, 1310, 68–76. https://doi.org/10.1016/j.brainres.2009.10.072
Squires, N. K., Squires, K. C., & Hillyard, S. A. (1975). Two varieties of long-latency positive waves evoked by unpredictable auditory stimuli in man. Electroencephalography and Clinical Neurophysiology, 38(4), 387–401. https://doi.org/10.1016/0013-4694(75)90263-1
Stefanics, G., Stefanics, G., Kremláček, J., & Czigler, I. (2014). Visual mismatch negativity: A predictive coding view. Frontiers in Human Neuroscience, 8(September), 1–19. https://doi.org/10.3389/fnhum.2014.00666
Strömmer, J. M., Tarkka, I. M., & Astikainen, P. (2014). Somatosensory mismatch response in young and elderly adults. Frontiers in Aging Neuroscience, 6. https://doi.org/10.3389/fnagi.2014.00293
Sultson, H., Vainik, U., & Kreegipuu, K. (2019). Hunger enhances automatic processing of food and non-food stimuli: A visual mismatch negativity study. Appetite, 133, 324–336. https://doi.org/10.1016/j.appet.2018.11.031
Sulykos, I., Kecskés-Kovács, K., & Czigler, I. (2015). Asymmetric effect of automatic deviant detection: The effect of familiarity in visual mismatch negativity. Brain Research, 1626, 108–117. https://doi.org/10.1016/j.brainres.2015.02.035
Sussman, E., Winkler, I., & Wang, W. (2003). MMN and attention: Competition for deviance detection. Psychophysiology, 40(3), 430–435. https://doi.org/10.1111/1469-8986.00045
Tervaniemi, M., Huotilainen, M., & Brattico, E. (2014). Melodic multi-feature paradigm reveals auditory profiles in music-sound encoding. Frontiers in Human Neuroscience, 0, 496. https://doi.org/10.3389/FNHUM.2014.00496
Tervaniemi, M., Janhunen, L., Kruck, S., Putkinen, V., & Huotilainen, M. (2016). Auditory Profiles of Classical, Jazz, and Rock Musicians: Genre-Specific Sensitivity to Musical Sound Features. Frontiers in Psychology, 6. https://doi.org/10.3389/fpsyg.2015.01900
Thornton, D., Harkrider, A. W., Jenson, D. E., & Saltuklaroglu, T. (2019). Sex differences in early sensorimotor processing for speech discrimination. Scientific Reports, 9(1). https://doi.org/10.1038/S41598-018-36775-5
Tiitinen, H., May, P., Reinikainen, K., & Näätänen, R. (1994). Attentive novelty detection in humans is governed by pre-attentive sensory memory. Nature, 372(6501), 90–92. https://doi.org/10.1038/372090A0
Vuust, P., Brattico, E., Glerean, E., Seppä Nen, M., Pakarinen, S., Tervaniemi, M., Nä, R., & Tä Nen, ¨. (2011). Special section on music in the brain: Research report New fast mismatch negativity paradigm for determining the neural prerequisites for musical ability. https://doi.org/10.1016/j.cortex.2011.04.026
Vuust, P., Brattico, E., Seppänen, M., Näätänen, R., & Tervaniemi, M. (2012). The sound of music: Differentiating musicians using a fast, musical multi-feature mismatch negativity paradigm. Neuropsychologia, 50(7), 1432–1443. https://doi.org/10.1016/j.neuropsychologia.2012.02.028
Vuust, P., Heggli, O. A., Friston, K. J., & Kringelbach, M. L. (2022). Music in the brain. Nature Reviews Neuroscience, 0123456789. https://doi.org/10.1038/s41583-022-00578-5
Wagner, L., Rahne, T., Plontke, S. K., & Heidekrüger, N. (2018). Mismatch negativity reflects asymmetric pre-attentive harmonic interval discrimination. PLOS ONE, 13(4), e0196176. https://doi.org/10.1371/journal.pone.0196176
Wang, Y., Huang, X., Zhang, J., Huang, S., Wang, J., Feng, Y., Jiang, Z., Wang, H., & Yin, S. (2022). Bottom-Up and Top-Down Attention Impairment Induced by Long-Term Exposure to Noise in the Absence of Threshold Shifts. Frontiers in Neurology, 13. https://doi.org/10.3389/fneur.2022.836683
Wanyan, X., Zhuang, D., Lin, Y., Xiao, X., & Song, J.-W. (2018). Influence of mental workload on detecting information varieties revealed by mismatch negativity during flight simulation. International Journal of Industrial Ergonomics, 64, 1–7. https://doi.org/10.1016/j.ergon.2017.08.004
Weber, C., Hahne, A., Friedrich, M., & Friederici, A. D. (2004). Discrimination of word stress in early infant perception: electrophysiological evidence. Cognitive Brain Research, 18(2), 149–161. https://doi.org/10.1016/j.cogbrainres.2003.10.001
Winkler, I., Reinikainen, K., & Näätänen, R. (1993). Event-related brain potentials reflect traces of echoic memory in humans. Perception & Psychophysics, 53(4), 443–449. https://doi.org/10.3758/BF03206788
Winkler, I., & Schröger, E. (2015). Auditory perceptual objects as generative models: Setting the stage for communication by sound. Brain and Language, 148, 1–22. https://doi.org/10.1016/J.BANDL.2015.05.003
Yüksel, M., Murphy, M., Rippe, J., Leicht, G., & Öngür, D. (2021). Decreased mismatch negativity and elevated frontal-lateral connectivity in first-episode psychosis. Journal of Psychiatric Research, 144, 37–44. https://doi.org/10.1016/j.jpsychires.2021.09.034
Zeng, G. Q., Xiao, X.-Z., Wang, Y., & Tse, C.-Y. (2022). Belief in biological origin of race (racial essentialism) increases sensitivities to cultural category changes measured by ERP mismatch negativity (MMN). Scientific Reports, 12(1), 4400. https://doi.org/10.1038/s41598-022-08399-3
Zora, H., Rudner, M., & Montell Magnusson, A. K. (2020). Concurrent affective and linguistic prosody with the same emotional valence elicits a late positive ERP response. European Journal of Neuroscience, 51(11), 2236–2249. https://doi.org/10.1111/ejn.14658
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Buletin Psikologi
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.