Mismatch Negativity (MMN): Komponen Event-Related Potentials (ERP) sebagai Penanda Aktivitas Otomatis Otak dalam Mendeteksi Perubahan

Zulfikri Khakim, Ferenc Honbolygó
(Submitted 29 April 2022)
(Published 23 December 2022)

Abstract


Agar dapat berinteraksi secara efisien terhadap banyaknya informasi sensori, otak memiliki strategi heuristis yang dapat menyaring informasi sekaligus mengarahkan atensi ketika muncul informasi yang penting dan krusial. Penelitian tentang otak telah mengungkapkan salah satu penanda atas sistem tersebut, yang disebut sebagai Mismatch Negativity (MMN). MMN merupakan salah satu komponen dari Event-Related brain Potentials (ERP) yang diasosiasikan dengan penanda sistem pendeteksi perubahan dan pelanggaran tiba-tiba terhadap aturan abstrak dari stimulus suara, dan dapat digunakan sebagai indikator objektif mengenai akurasi diskriminasi suara, sensori memori, maupun proses praatensi. Komponen MMN muncul sebagai gelombang negatif yang terpicu oleh stimulus yang menyimpang dari keteraturan. Metode MMN telah banyak digunakan dalam berbagai bidang penelitian hingga konteks klinis. MMN juga merupakan metode yang sangat bermanfaat untuk menyelidiki mekanisme pemrosesan kognitif pada populasi yang memiliki kesulitan untuk mengikuti prosedur eksperimen, misalnya pada anak-anak, atau pasien klinis karena sifatnya yang otomatis dan tidak membutuhkan atensi. Artikel ini bertujuan untuk memberikan pengenalan mengenai konsep dan prinsip dasar dalam MMN, paradigma eksperimen, hingga contoh aplikasi, dan potensi penelitian yang dapat dilakukan menggunakan metode ini.

Keywords


mismatch negativity; event-related potentials; electroencephalography; psikologi

Full Text: PDF

DOI: 10.22146/buletinpsikologi.74437

References


Akatsuka, K., Wasaka, T., Nakata, H., Inui, K., Hoshiyama, M., & Kakigi, R. (2005). Mismatch responses related to temporal discrimination of somatosensory stimulation. Clinical Neurophysiology, 116(8), 1930–1937. https://doi.org/10.1016/J.CLINPH.2005.04.021

Akatsuka, K., Wasaka, T., Nakata, H., Kida, T., Hoshiyama, M., Tamura, Y., & Kakigi, R. (2007). Objective examination for two-point stimulation using a somatosensory oddball paradigm: an MEG study. Clinical Neurophysiology : Official Journal of the International Federation of Clinical Neurophysiology, 118(2), 403–411. https://doi.org/10.1016/J.CLINPH.2006.09.030

Aleksandrov, A. A., Memetova, K. S., Stankevich, L. N., Knyazeva, V. M., & Shtyrov, Y. (2020). Referent’s Lexical Frequency Predicts Mismatch Negativity Responses to New Words Following Semantic Training. Journal of Psycholinguistic Research, 49(2), 187–198. https://doi.org/10.1007/s10936-019-09678-3

Alho, K., Sainio, K., Sajaniemi, N., Reinikainen, K., & Näätänen, R. (1990). Event-related brain potential of human newborns to pitch change of an acoustic stimulus. Electroencephalography and Clinical Neurophysiology/ Evoked Potentials, 77(2), 151–155. https://doi.org/10.1016/0168-5597(90)90031-8

Alho, Kimmo, Woods, D. L., Algazi, A., & Näätänen, R. (1992). Intermodal selective attention. II. Effects of attentional load on processing of auditory and visual stimuli in central space. Electroencephalography and Clinical Neurophysiology, 82(5), 356–368. https://doi.org/10.1016/0013-4694(92)90005-3

Arndt, C., Schlemmer, K., & van der Meer, E. (2020). Same or different pitch? Effects of musical expertise, pitch difference, and auditory task on the pitch discrimination ability of musicians and non-musicians. Experimental Brain Research, 238(1), 247–258. https://doi.org/10.1007/s00221-019-05707-8

Baldeweg, T., Richardson, A., Watkins, S., Foale, C., & Gruzelier, J. (1999). Impaired auditory frequency discrimination in dyslexia detected with mismatch evoked potentials. Annals of Neurology, 45(4), 495–503. https://doi.org/10.1002/1531-8249(199904)45:4<495::AID-ANA11>3.0.CO;2-M

Bartha-Doering, L., Deuster, D., Giordano, V., Am Zehnhoff-Dinnesen, A., & Dobel, C. (2015). A systematic review of the mismatch negativity as an index for auditory sensory memory: From basic research to clinical and developmental perspectives. Psychophysiology, 52(9), 1115–1130. https://doi.org/10.1111/psyp.12459

Beck, A.-K., Berti, S., Czernochowski, D., & Lachmann, T. (2021). Do categorical representations modulate early automatic visual processing? A visual mismatch-negativity study. Biological Psychology, 163, 108139. https://doi.org/10.1016/j.biopsycho.2021.108139

Bhat, A., Irizar, H., Thygesen, J. H., Kuchenbaecker, K., Pain, O., Adams, R. A., Zartaloudi, E., Harju-Seppänen, J., Austin-Zimmerman, I., Wang, B., Muir, R., Summerfelt, A., Du, X. M., Bruce, H., O’Donnell, P., Srivastava, D. P., Friston, K., Hong, L. E., Hall, M.-H., & Bramon, E. (2021). Transcriptome-wide association study reveals two genes that influence mismatch negativity. Cell Reports, 34(11), 108868. https://doi.org/10.1016/j.celrep.2021.108868

Bissonnette, J. N., Francis, A. M., Hull, K. M., Leckey, J., Pimer, L., Berrigan, L. I., & Fisher, D. J. (2020). MMN-Indexed Auditory Change Detection in Major Depressive Disorder. Clinical EEG and Neuroscience, 51(6), 365–372. https://doi.org/10.1177/1550059420914200

Bonetti, L., Haumann, N. T., Vuust, P., Kliuchko, M., & Brattico, E. (2017). Risk of depression enhances auditory Pitch discrimination in the brain as indexed by the mismatch negativity. Clinical Neurophysiology, 128(10), 1923–1936. https://doi.org/10.1016/j.clinph.2017.07.004

Böttcher-Gandor, C., Ullsperger, P., Bottcher-Gandor, C., Ullsperger, P., Böttcher-Gandor, C., & Ullsperger, P. (1992). Mismatch Negativity in Event-Related Potentials to Auditory Stimuli as a Function of Varying Interstimulus Interval. Psychophysiology, 29(5), 546–550. https://doi.org/10.1111/j.1469-8986.1992.tb02028.x

Bötzel, K., Schulze, S., & Stodieck, S. G. (1995). Scalp topography and analysis of intracranial sources of face-evoked potentials. Experimental Brain Research, 104(1). https://doi.org/10.1007/BF00229863

Brunellière, A., Dufour, S., & Nguyen, N. (2011). Regional differences in the listener’s phonemic inventory affect semantic processing: A mismatch negativity (MMN) study. Brain and Language, 117(1), 45–51. https://doi.org/10.1016/j.bandl.2010.12.004

Casado, A., & Brunellière, A. (2016). The influence of sex information into spoken words: a mismatch negativity (MMN) study. Brain Research, 1650, 73–83. https://doi.org/10.1016/j.brainres.2016.08.039

Chen, C., Chan, C.-W., & Cheng, Y. (2018). Test–Retest Reliability of Mismatch Negativity (MMN) to Emotional Voices. Frontiers in Human Neuroscience, 12. https://doi.org/10.3389/fnhum.2018.00453

Chen, T.-C., Hsieh, M. H., Lin, Y.-T., Chan, P.-Y. S., & Cheng, C.-H. (2020). Mismatch negativity to different deviant changes in autism spectrum disorders: A meta-analysis. Clinical Neurophysiology, 131(3), 766–777. https://doi.org/10.1016/j.clinph.2019.10.031

Cohen, D. (1972). Magnetoencephalography: Detection of the Brain’s Electrical Activity with a Superconducting Magnetometer. Science, 175(4022), 664–666. https://doi.org/10.1126/science.175.4022.664

Cornell, S. A., Lahiri, A., & Eulitz, C. (2013). Inequality across consonantal contrasts in speech perception: Evidence from mismatch negativity. Journal of Experimental Psychology: Human Perception and Performance, 39(3), 757–772. https://doi.org/10.1037/a0030862

Crespo-Bojorque, P., Monte-Ordoño, J., & Toro, J. M. (2018). Early neural responses underlie advantages for consonance over dissonance. Neuropsychologia, 117, 188–198. https://doi.org/10.1016/j.neuropsychologia.2018.06.005

Csépe, V., Karmos, G., & Molnár, M. (1987). Evoked potential correlates of stimulus deviance during wakefulness and sleep in cat - animal model of mismatch negativity. Electroencephalography and Clinical Neurophysiology, 66(6), 571–578. https://doi.org/10.1016/0013-4694(87)90103-9

Cummings, A., Wu, Y. C., & Ogiela, D. A. (2021). Phonological Underspecification: An Explanation for How a Rake Can Become Awake. Frontiers in Human Neuroscience, 15(February), 1–18. https://doi.org/10.3389/fnhum.2021.585817

Deng, N., Sun, Y., Chen, X., & Li, W. (2022). How does self name influence the neural processing of emotional prosody? An ERP study. PsyCh Journal, 11(1), 30–42. https://doi.org/10.1002/pchj.499

Ding, X., Chen, Y., Liu, Y., Zhao, J., & Liu, J. (2022). The automatic detection of unexpected emotion and neutral body postures: A visual mismatch negativity study. Neuropsychologia, 164, 108108. https://doi.org/10.1016/j.neuropsychologia.2021.108108

Donaldson, K. R., Larsen, E. M., Jonas, K., Tramazzo, S., Perlman, G., Foti, D., Mohanty, A., & Kotov, R. (2021). Mismatch negativity amplitude in first-degree relatives of individuals with psychotic disorders: Links with cognition and schizotypy. Schizophrenia Research, 238, 161–169. https://doi.org/10.1016/j.schres.2021.10.006

Eimer, M. (2011). The Face-Sensitivity of the N170 Component. Frontiers in Human Neuroscience, 5. https://doi.org/10.3389/fnhum.2011.00119

Engström, E., Kallioinen, P., Nakeva von Mentzer, C., Lindgren, M., Sahlén, B., Lyxell, B., Ors, M., & Uhlén, I. (2021). Auditory event-related potentials and mismatch negativity in children with hearing loss using hearing aids or cochlear implants – A three-year follow-up study. International Journal of Pediatric Otorhinolaryngology, 140, 110519. https://doi.org/10.1016/j.ijporl.2020.110519

Eulitz, C., & Lahiri, A. (2004). Neurobiological evidence for abstract phonological representations in the mental lexicon during speech recognition. Journal of Cognitive Neuroscience, 16(4), 577–583. https://doi.org/10.1162/089892904323057308

Fan, L., Sun, Y. Bin, Sun, Z. K., Wang, N., Luo, F., Yu, F., & Wang, J. Y. (2018). Modulation of auditory sensory memory by chronic clinical pain and acute experimental pain: a mismatch negativity study. Scientific Reports 2018 8:1, 8(1), 1–13. https://doi.org/10.1038/s41598-018-34099-y

Fernandes, N. M., Gil, D., & Azevedo, M. F. de. (2019). Mismatch Negativity in Children with Cochlear Implant. International Archives of Otorhinolaryngology, 23(03), e292–e298. https://doi.org/10.1055/s-0039-1688967

Fischer, C., Luauté, J., Némoz, C., Morlet, D., Kirkorian, G., & Mauguière, F. (2006). Improved prediction of awakening or nonawakening from severe anoxic coma using tree-based classification analysis. Critical Care Medicine, 34(5), 1520–1524. https://doi.org/10.1097/01.CCM.0000215823.36344.99

Fisher, D. J., Grant, B., Smith, D. M., & Knott, V. J. (2011). Effects of deviant probability on the ‘optimal’ multi-feature mismatch negativity (MMN) paradigm. International Journal of Psychophysiology, 79(2), 311–315. https://doi.org/10.1016/j.ijpsycho.2010.11.006

Fisher, D. J., Scott, T. L., Shah, D. K., Prise, S., Thompson, M., & Knott, V. J. (2010). Light up and see: Enhancement of the visual mismatch negativity (vMMN) by nicotine. Brain Research, 1313, 162–171. https://doi.org/10.1016/j.brainres.2009.12.002

Fishman, Y. I., Volkov, I. O., Noh, M. D., Garell, P. C., Bakken, H., Arezzo, J. C., Howard, M. A., & Steinschneider, M. (2001). Consonance and Dissonance of Musical Chords: Neural Correlates in Auditory Cortex of Monkeys and Humans. Journal of Neurophysiology, 86(6), 2761–2788. https://doi.org/10.1152/jn.2001.86.6.2761

Fitzgerald, K., & Todd, J. (2020). Making Sense of Mismatch Negativity. Frontiers in Psychiatry, 11(June), 1–19. https://doi.org/10.3389/fpsyt.2020.00468

Franken, I. H. A., Nijs, I., & Van Strien, J. W. (2005). Impulsivity affects mismatch negativity (MMN) measures of preattentive auditory processing. Biological Psychology, 70(3), 161–167. https://doi.org/10.1016/j.biopsycho.2005.01.007

Frey, A., François, C., Chobert, J., Velay, J.-L., Habib, M., & Besson, M. (2019). Music Training Positively Influences the Preattentive Perception of Voice Onset Time in Children with Dyslexia: A Longitudinal Study. Brain Sciences, 9(4), 91. https://doi.org/10.3390/brainsci9040091

Friston, K. (2003). Learning and inference in the brain. Neural Networks, 16(9), 1325–1352. https://doi.org/10.1016/j.neunet.2003.06.005

Friston, K. (2005). A theory of cortical responses. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1456), 815–836. https://doi.org/10.1098/rstb.2005.1622

Fucci, E., Abdoun, O., Caclin, A., Francis, A., Dunne, J. D., Ricard, M., Davidson, R. J., & Lutz, A. (2018). Differential effects of non-dual and focused attention meditations on the formation of automatic perceptual habits in expert practitioners. Neuropsychologia, 119, 92–100. https://doi.org/10.1016/j.neuropsychologia.2018.07.025

Fucci, Enrico, Poublan-Couzardot, A., Abdoun, O., & Lutz, A. (2022). No effect of focused attention and open monitoring meditation on EEG auditory mismatch negativity in expert and novice practitioners. International Journal of Psychophysiology, 176, 62–72. https://doi.org/10.1016/j.ijpsycho.2022.03.010

Garami, L., Ragó, A., Honbolygó, F., & Csépe, V. (2017). Lexical influence on stress processing in a fixed-stress language. International Journal of Psychophysiology, 117, 10–16. https://doi.org/10.1016/j.ijpsycho.2017.03.006

Garrido, M. I., Kilner, J. M., Stephan, K. E., & Friston, K. J. (2009). The mismatch negativity: A review of underlying mechanisms. Clinical Neurophysiology, 120(3), 453–463. https://doi.org/10.1016/j.clinph.2008.11.029

Giard, M.-H., Perrin, F., Pernier, J., & Bouchet, P. (1990). Brain Generators Implicated in the Processing of Auditory Stimulus Deviance: A Topographic Event-Related Potential Study. Psychophysiology, 27(6), 627–640. https://doi.org/10.1111/j.1469-8986.1990.tb03184.x

Greber, M., Rogenmoser, L., Elmer, S., & Jäncke, L. (2018). Electrophysiological Correlates of Absolute Pitch in a Passive Auditory Oddball Paradigm: a Direct Replication Attempt. Eneuro, 5(6), ENEURO.0333-18.2018. https://doi.org/10.1523/ENEURO.0333-18.2018

Green, H. L., Shuffrey, L. C., Levinson, L., Shen, G., Avery, T., Randazzo Wagner, M., Sepulveda, D. M., Garcia, P., Maddox, C., Garcia, F., Hassan, S., & Froud, K. (2020). Evaluation of mismatch negativity as a marker for language impairment in autism spectrum disorder. Journal of Communication Disorders, 87, 105997. https://doi.org/10.1016/j.jcomdis.2020.105997

Groppe, D. M., Urbach, T. P., & Kutas, M. (2011). Mass univariate analysis of event-related brain potentials/fields I: A critical tutorial review. Psychophysiology, 48(12), 1711–1725. https://doi.org/10.1111/j.1469-8986.2011.01273.x

Gu, C., & Bi, H.-Y. (2020). Auditory processing deficit in individuals with dyslexia: A meta-analysis of mismatch negativity. Neuroscience & Biobehavioral Reviews, 116, 396–405. https://doi.org/10.1016/j.neubiorev.2020.06.032

Hanna, J., Cappelle, B., & Pulvermüller, F. (2017). Spread the word: MMN brain response reveals whole-form access of discontinuous particle verbs. Brain and Language, 175, 86–98. https://doi.org/10.1016/j.bandl.2017.10.002

He, X., Liu, W., Qin, N., Lyu, L., Dong, X., & Bao, M. (2021). Performance‐dependent reward hurts performance: The non‐monotonic attentional load modulation on task‐irrelevant distractor processing. Psychophysiology, 58(12). https://doi.org/10.1111/psyp.13920

He, X., Zhang, J., Zhang, Z., Go, R., Wu, J., Li, C., Gan, K., & Chen, D. (2020). Effects of Visual Attentional Load on the Tactile Sensory Memory Indexed by Somatosensory Mismatch Negativity. Frontiers in Neuroinformatics, 14. https://doi.org/10.3389/fninf.2020.575078

Hestvik, A., & Durvasula, K. (2016). Neurobiological evidence for voicing underspecification in English. Brain and Language, 152, 28–43. https://doi.org/10.1016/j.bandl.2015.10.007

Hestvik, A., Shinohara, Y., Durvasula, K., Verdonschot, R. G., & Sakai, H. (2020). Abstractness of human speech sound representations. Brain Research, 1732, 146664. https://doi.org/10.1016/J.BRAINRES.2020.146664

Higgins, A., Lewandowski, K. E., Liukasemsarn, S., & Hall, M.-H. (2021). Longitudinal relationships between mismatch negativity, cognitive performance, and real-world functioning in early psychosis. Schizophrenia Research, 228, 385–393. https://doi.org/10.1016/j.schres.2021.01.009

Hjorth, B. (1970). EEG analysis based on time domain properties. Electroencephalography and Clinical Neurophysiology, 29(3), 306–310. https://doi.org/10.1016/0013-4694(70)90143-4

Honbolygó, F., Kóbor, A., German, B., & Csépe, V. (2020). Word stress representations are language-specific: Evidence from event-related brain potentials. Psychophysiology, 57(5), 1–12. https://doi.org/10.1111/psyp.13541

Honbolygó, F., Kolozsvári, O., & Csépe, V. (2017). Processing of word stress related acoustic information : A multi-feature MMN study. International Journal of Psychophysiology, 118(0), 9–17. https://jyx.jyu.fi/handle/123456789/54259

Houlihan, M., & Stelmack, R. M. (2012). Mental ability and mismatch negativity: Pre-attentive discrimination of abstract feature conjunctions in auditory sequences. Intelligence, 40(3), 239–244. https://doi.org/10.1016/j.intell.2012.02.003

Jääskeläinen, I. P., Ahveninen, J., Bonmassar, G., Dale, A. M., Ilmoniemi, R. J., Levänen, S., Lin, F.-H., May, P., Melcher, J., Stufflebeam, S., Tiitinen, H., & Belliveau, J. W. (2004). Human posterior auditory cortex gates novel sounds to consciousness. Proceedings of the National Academy of Sciences, 101(17), 6809–6814. https://doi.org/10.1073/pnas.0303760101

Jääskeläinen, I. P., Hautamäki, M., Näätänen, R., & Ilmoniemi, R. J. (1999). Temporal span of human echoic memory and mismatch negativity: revisited. NeuroReport, 10(6). https://journals.lww.com/neuroreport/Fulltext/1999/04260/Temporal_span_of_human_echoic_memory_and_mismatch.28.aspx

Jarkiewicz, M., & Wichniak, A. (2015). Can new paradigms bring new perspectives for mismatch negativity studies in schizophrenia? Neuropsychiatric Electrophysiology, 1(1), 1–16. https://doi.org/10.1186/S40810-015-0010-Z/TABLES/1

Kappenman, E. S., Farrens, J. L., Zhang, W., Stewart, A. X., & Luck, S. J. (2021). ERP CORE: An open resource for human event-related potential research. NeuroImage, 225(October 2020), 117465. https://doi.org/10.1016/j.neuroimage.2020.117465

Kekoni, J., Hämäläinen, H., Saarinen, M., Gröhn, J., Reinikainen, K., Lehtokoski, A., & Näätänen, R. (1997). Rate effect and mismatch responses in the somatosensory system: ERP-recordings in humans. Biological Psychology, 46(2), 125–142. https://doi.org/10.1016/S0301-0511(97)05249-6

Khakim, Z., & Kusrohmaniah, S. (2021). Dasar - Dasar Electroencephalography (EEG) bagi Riset Psikologi. Buletin Psikologi, 29(1), 92. https://doi.org/10.22146/buletinpsikologi.52328

Kim, S., Baek, J. H., Shim, S., Kwon, Y. J., Lee, H. Y., Yoo, J. H., & Kim, J. S. (2020). Mismatch negativity indices and functional outcomes in unipolar and bipolar depression. Scientific Reports, 10(1), 12831. https://doi.org/10.1038/s41598-020-69776-4

Kirihara, K., Tada, M., Koshiyama, D., Fujioka, M., Usui, K., Araki, T., & Kasai, K. (2020). A Predictive Coding Perspective on Mismatch Negativity Impairment in Schizophrenia. Frontiers in Psychiatry, 11, 660. https://doi.org/10.3389/FPSYT.2020.00660/BIBTEX

Kliuchko, M., Brattico, E., Gold, B. P., Tervaniemi, M., Bogert, B., Toiviainen, P., & Vuust, P. (2019). Fractionating auditory priors: A neural dissociation between active and passive experience of musical sounds. PLOS ONE, 14(5), e0216499. https://doi.org/10.1371/journal.pone.0216499

Kliuchko, M., Heinonen-Guzejev, M., Vuust, P., Tervaniemi, M., & Brattico, E. (2016). A window into the brain mechanisms associated with noise sensitivity. Scientific Reports 2016 6:1, 6(1), 1–9. https://doi.org/10.1038/srep39236

Koshiyama, D., Kirihara, K., Tada, M., Nagai, T., Fujioka, M., Usui, K., Araki, T., & Kasai, K. (2020). Reduced Auditory Mismatch Negativity Reflects Impaired Deviance Detection in Schizophrenia. Schizophrenia Bulletin, 46(4), 937–946. https://doi.org/10.1093/SCHBUL/SBAA006

Kostilainen, K., Wikström, V., Pakarinen, S., Videman, M., Karlsson, L., Keskinen, M., Scheinin, N. M., Karlsson, H., & Huotilainen, M. (2018). Healthy full-term infants’ brain responses to emotionally and linguistically relevant sounds using a multi-feature mismatch negativity (MMN) paradigm. Neuroscience Letters, 670, 110–115. https://doi.org/10.1016/J.NEULET.2018.01.039

Kotzor, S., Wetterlin, A., & Lahiri, A. (2017). Symmetry or asymmetry: Evidence for underspecification in the mental lexicon. The Speech Processing Lexicon, 85–106. https://doi.org/10.1515/9783110422658-005/HTML

Kremláček, J., Kuba, M., Kubová, Z., & Langrová, J. (2006). Visual mismatch negativity elicited by magnocellular system activation. Vision Research, 46(4), 485–490. https://doi.org/10.1016/j.visres.2005.10.001

Kremláček, Jan, Kreegipuu, K., Tales, A., Astikainen, P., Põldver, N., Näätänen, R., & Stefanics, G. (2016). Visual mismatch negativity (vMMN): A review and meta-analysis of studies in psychiatric and neurological disorders. Cortex, 80, 76–112. https://doi.org/10.1016/j.cortex.2016.03.017

Kujala, T., Kuuluvainen, S., Saalasti, S., Jansson-Verkasalo, E., Wendt, L. von, & Lepistö, T. (2010). Speech-feature discrimination in children with Asperger syndrome as determined with the multi-feature mismatch negativity paradigm. Clinical Neurophysiology, 121(9), 1410–1419. https://doi.org/10.1016/j.clinph.2010.03.017

Kujala, Teija, Tervaniemi, M., & Schröger, E. (2007). The mismatch negativity in cognitive and clinical neuroscience: Theoretical and methodological considerations. Biological Psychology, 74(1), 1–19. https://doi.org/10.1016/j.biopsycho.2006.06.001

Kuuluvainen, S., Alku, P., Makkonen, T., Lipsanen, J., & Kujala, T. (2016). Cortical speech and non-speech discrimination in relation to cognitive measures in preschool children. European Journal of Neuroscience, 43(6), 738–750. https://doi.org/10.1111/ejn.13141

Lahiri, A., & Reetz, H. (2002). Underspecified recognition. In C. Gussenhoven & N. Warner (Eds.), Laboratory Phonology 7 (pp. 637–676).

Lahiri, A., & Reetz, H. (2010). Distinctive features: Phonological underspecification in representation and processing. Journal of Phonetics, 38(1), 44–59. https://doi.org/10.1016/j.wocn.2010.01.002

Lappe, C., Lappe, M., & Pantev, C. (2016). Differential processing of melodic, rhythmic and simple tone deviations in musicians -an MEG study. NeuroImage, 124, 898–905. https://doi.org/10.1016/j.neuroimage.2015.09.059

Lindström, R., Lepistö-Paisley, T., Makkonen, T., Reinvall, O., Nieminen-von Wendt, T., Alén, R., & Kujala, T. (2018). Atypical perceptual and neural processing of emotional prosodic changes in children with autism spectrum disorders. Clinical Neurophysiology, 129(11), 2411–2420. https://doi.org/10.1016/j.clinph.2018.08.018

Luck, S. J. (2012). Event-related potentials. In APA handbook of research methods in psychology, Vol 1: Foundations, planning, measures, and psychometrics. (pp. 523–546). American Psychological Association. https://doi.org/10.1037/13619-028

Luck, S. J. (2014). An introduction to the event-related potential technique. MIT Press.

Luck, S. J., & Kappenman, E. (2011). Oxford handbook of ERP. In The Oxford Handbook of Management Information Systems: Critical Perspectives and New Directions (Issue September). http://www.scopus.com/inward/record.url?eid=2-s2.0-84924891367&partnerID=40&md5=08a0b6d6a450f2679201578f06244a52

Luck, S. J., Kappenman, E. S., Fuller, R. L., Robinson, B., Summerfelt, A., & Gold, J. M. (2009). Impaired response selection in schizophrenia: Evidence from the P3 wave and the lateralized readiness potential. Psychophysiology, 46(4), 776–786. https://doi.org/10.1111/j.1469-8986.2009.00817.x

Marhl, U., Jodko-Władzińska, A., Brühl, R., Sander, T., & Jazbinšek, V. (2022). Transforming and comparing data between standard SQUID and OPM-MEG systems. PLOS ONE, 17(1), e0262669. https://doi.org/10.1371/journal.pone.0262669

Mathias, B., Lidji, P., Honing, H., Palmer, C., & Peretz, I. (2016). Electrical Brain Responses to Beat Irregularities in Two Cases of Beat Deafness. Frontiers in Neuroscience, 10. https://doi.org/10.3389/fnins.2016.00040

McDermott, J. H., Schultz, A. F., Undurraga, E. A., & Godoy, R. A. (2016). Indifference to dissonance in native Amazonians reveals cultural variation in music perception. Nature, 535(7613), 547–550. https://doi.org/10.1038/NATURE18635

Menzel, C., Kovács, G., Amado, C., Hayn-Leichsenring, G. U., & Redies, C. (2018). Visual mismatch negativity indicates automatic, task-independent detection of artistic image composition in abstract artworks. Biological Psychology, 136, 76–86. https://doi.org/10.1016/j.biopsycho.2018.05.005

Näätänen, R. (2003). Mismatch negativity: Clinical research and possible applications. International Journal of Psychophysiology, 48(2), 179–188. https://doi.org/10.1016/S0167-8760(03)00053-9

Näätänen, R., & Gaillard, A. W. K. (1983). The Orienting Reflex and the N2 Deflection of the Event-Related Potential (ERP). Advances in Psychology, 10(C), 119–141. https://doi.org/10.1016/S0166-4115(08)62036-1

Näätänen, R., Gaillard, A. W. K., & Mäntysalo, S. (1978). Early selective-attention effect on evoked potential reinterpreted. Acta Psychologica, 42(4), 313–329. https://doi.org/10.1016/0001-6918(78)90006-9

Näätänen, R., Jacobsen, T., & Winkler, I. (2005). Memory-based or afferent processes in mismatch negativity (MMN): A review of the evidence. Psychophysiology, 42(1), 25–32. https://doi.org/10.1111/j.1469-8986.2005.00256.x

Näätänen, R., & Kreegipuu, K. (2011). The Mismatch Negativity (MMN). In E. S. Kappenman & S. J. Luck (Eds.), The Oxford Handbook of Event-Related Potential Components. Oxford University Press. https://doi.org/10.1093/oxfordhb/9780195374148.013.0081

Näätänen, R., Lehtokoskl, A., Lennest, M., Cheour, M., Huotilainen, M., Valnlot, M., Alku, P., Risto, J., Luuk, A., Alllk, J., Slnkkonen, J., & Alho, K. (1997). Language-specific phoneme representations revealed by electric and magnetic brain responses. 38(January), 2–4.

Näätänen, R., Paavilainen, P., Rinne, T., & Alho, K. (2007). The mismatch negativity (MMN) in basic research of central auditory processing: A review. Clinical Neurophysiology, 118(12), 2544–2590. https://doi.org/10.1016/j.clinph.2007.04.026

Näätänen, R., Pakarinen, S., Rinne, T., & Takegata, R. (2004). The mismatch negativity (MMN): Towards the optimal paradigm. Clinical Neurophysiology, 115(1), 140–144. https://doi.org/10.1016/j.clinph.2003.04.001

Näätänen, R., Petersen, B., Torppa, R., Lonka, E., & Vuust, P. (2017). The MMN as a viable and objective marker of auditory development in CI users. Hearing Research, 353, 57–75. https://doi.org/10.1016/j.heares.2017.07.007

Näätänen, R., & Picton, T. (1987). The N1 Wave of the Human Electric and Magnetic Response to Sound: A Review and an Analysis of the Component Structure. In Psychophysiology (Vol. 24, Issue 4, pp. 375–425).

Näätänen, R., Shiga, T., Asano, S., & Yabe, H. (2015). Mismatch negativity (MMN) deficiency: A break-through biomarker in predicting psychosis onset. International Journal of Psychophysiology, 95(3), 338–344. https://doi.org/10.1016/j.ijpsycho.2014.12.012

Nan, Y., Huang, W., Wang, W., Liu, C., & Dong, Q. (2016). Subgroup differences in the lexical tone mismatch negativity (MMN) among Mandarin speakers with congenital amusia. Biological Psychology, 113, 59–67. https://doi.org/10.1016/j.biopsycho.2015.11.010

Niemitalo-Haapola, E., Lapinlampi, S., Kujala, T., Alku, P., Kujala, T., Suominen, K., & Jansson-Verkasalo, E. (2013). Linguistic multi-feature paradigm as an eligible measure of central auditory processing and novelty detection in 2-year-old children. Http://Dx.Doi.Org/10.1080/17588928.2013.781146, 4(2), 99–106. https://doi.org/10.1080/17588928.2013.781146

Pakarinen, S., Lohilahti, J., Sokka, L., Korpela, J., Huotilainen, M., & Müller, K. (2021). Auditory deviance detection and involuntary attention allocation in occupational burnout—A follow‐up study. European Journal of Neuroscience. https://doi.org/10.1111/ejn.15429

Pakarinen, S., Lovio, R., Huotilainen, M., Alku, P., Näätänen, R., & Kujala, T. (2009). Fast multi-feature paradigm for recording several mismatch negativities (MMNs) to phonetic and acoustic changes in speech sounds. Biological Psychology, 82(3), 219–226. https://doi.org/10.1016/j.biopsycho.2009.07.008

Pakarinen, S., Takegata, R., Rinne, T., Huotilainen, M., & Näätänen, R. (2007). Measurement of extensive auditory discrimination profiles using the mismatch negativity (MMN) of the auditory event-related potential (ERP). Clinical Neurophysiology, 118(1), 177–185. https://doi.org/10.1016/j.clinph.2006.09.001

Partanen, E., Kivimäki, R., Huotilainen, M., Ylinen, S., & Tervaniemi, M. (2022). Musical perceptual skills, but not neural auditory processing, are associated with better reading ability in childhood. Neuropsychologia, 169, 108189. https://doi.org/10.1016/j.neuropsychologia.2022.108189

Partanen, E., Vainio, M., Kujala, T., & Huotilainen, M. (2011). Linguistic multifeature MMN paradigm for extensive recording of auditory discrimination profiles. Psychophysiology, 48(10), 1372–1380. https://doi.org/10.1111/J.1469-8986.2011.01214.X

Pazo-Alvarez, P., Cadaveira, F., & Amenedo, E. (2003). MMN in the visual modality: A review. Biological Psychology, 63(3), 199–236. https://doi.org/10.1016/S0301-0511(03)00049-8

Peter, V., Mcarthur, G., & Thompson, W. F. (2012). Discrimination of stress in speech and music: A mismatch negativity (MMN) study. Psychophysiology, 49(12), 1590–1600. https://doi.org/10.1111/j.1469-8986.2012.01472.x

Petrosino, R., Almeida, Diogo, Calabrese, A., Sprouse, &, & Jon. (2021). Social cognition categories impact early auditory processing: asymmetrical mismatch negativities to socially-marked biological sounds. https://robpetrosino.github.io/publication/mmns/

Plumridge, J. M. A., Barham, M. P., Foley, D. L., Ware, A. T., Clark, G. M., Albein-Urios, N., Hayden, M. J., & Lum, J. A. G. (2020). The Effect of Visual Articulatory Information on the Neural Correlates of Non-native Speech Sound Discrimination. Frontiers in Human Neuroscience, 14. https://doi.org/10.3389/fnhum.2020.00025

Pulvermüller, F., & Shtyrov, Y. (2003). Automatic processing of grammar in the human brain as revealed by the mismatch negativity. NeuroImage, 20(1), 159–172. https://doi.org/10.1016/S1053-8119(03)00261-1

Pulvermüller, F., Shtyrov, Y., Hasting, A. S., & Carlyon, R. P. (2008). Syntax as a reflex: Neurophysiological evidence for early automaticity of grammatical processing. Brain and Language, 104(3), 244–253. https://doi.org/10.1016/j.bandl.2007.05.002

Putkinen, V., Huotilainen, M., & Tervaniemi, M. (2019). Neural Encoding of Pitch Direction Is Enhanced in Musically Trained Children and Is Related to Reading Skills. Frontiers in Psychology, 10. https://doi.org/10.3389/fpsyg.2019.01475

Putkinen, V., Makkonen, T., & Eerola, T. (2017). Music-induced positive mood broadens the scope of auditory attention. Social Cognitive and Affective Neuroscience, 12(7), 1159–1168. https://doi.org/10.1093/scan/nsx038

Putkinen, V., Tervaniemi, M., & Huotilainen, M. (2019). Musical playschool activities are linked to faster auditory development during preschool-age: a longitudinal ERP study. Scientific Reports, 9(1), 11310. https://doi.org/10.1038/s41598-019-47467-z

Quiroga‐Martinez, D. R., C. Hansen, N., Højlund, A., Pearce, M., Brattico, E., & Vuust, P. (2020). Musical prediction error responses similarly reduced by predictive uncertainty in musicians and non‐musicians. European Journal of Neuroscience, 51(11), 2250–2269. https://doi.org/10.1111/ejn.14667

Rachman, L., Dubal, S., & Aucouturier, J.-J. (2019). Happy you, happy me: expressive changes on a stranger’s voice recruit faster implicit processes than self-produced expressions. Social Cognitive and Affective Neuroscience, 14(5), 559–568. https://doi.org/10.1093/scan/nsz030

Riedinger, M., Nagels, A., Werth, A., & Scharinger, M. (2021). Asymmetries in Accessing Vowel Representations Are Driven by Phonological and Acoustic Properties: Neural and Behavioral Evidence From Natural German Minimal Pairs. Frontiers in Human Neuroscience, 15. https://doi.org/10.3389/fnhum.2021.612345

Rinne, T., Alho, K., Ilmoniemi, R. J., Virtanen, J., & Näätänen, R. (2000). Separate Time Behaviors of the Temporal and Frontal Mismatch Negativity Sources. NeuroImage, 12(1), 14–19. https://doi.org/10.1006/nimg.2000.0591

Saarikivi, K., Putkinen, V., Tervaniemi, M., & Huotilainen, M. (2016). Cognitive flexibility modulates maturation and music-training-related changes in neural sound discrimination. European Journal of Neuroscience, 44(2), 1815–1825. https://doi.org/10.1111/ejn.13176

Sabri, M., & Campbell, K. B. (2001). Effects of sequential and temporal probability of deviant occurrence on mismatch negativity. Cognitive Brain Research, 12(1), 171–180. https://doi.org/10.1016/S0926-6410(01)00026-X

Sams, M, Hämäläinen, M., Antervo, A., Kaukoranta, E., Reinikainen, K., & Hari, R. (1985). Cerebral neuromagnetic responses evoked by short auditory stimuli. Electroencephalography and Clinical Neurophysiology, 61(4), 254–266. https://doi.org/10.1016/0013-4694(85)91092-2

Sams, Mikko, Hari, R., Rif, J., & Knuutila, J. (1993). The human auditory sensory memory trace persists about 10 sec: Neuromagnetic evidence. Journal of Cognitive Neuroscience, 5(3), 363–370. https://doi.org/10.1162/jocn.1993.5.3.363

Sato, Y., Yabe, H., Hiruma, T., Sutoh, T., Shinozaki, N., Nashida, T., & Kaneko, S. (2000). The effect of deviant stimulus probability on the human mismatch process. NeuroReport, 11(17), 3703–3708. https://doi.org/10.1097/00001756-200011270-00023

Schulte-Körne, G., Deimel, W., Bartling, J., & Remschmidt, H. (1998). Auditory processing and dyslexia. NeuroReport, 9(2), 337–340. https://doi.org/10.1097/00001756-199801260-00029

Schwartz, S., Shinn-Cunningham, B., & Tager-Flusberg, H. (2018). Meta-analysis and systematic review of the literature characterizing auditory mismatch negativity in individuals with autism. Neuroscience & Biobehavioral Reviews, 87, 106–117. https://doi.org/10.1016/j.neubiorev.2018.01.008

Sethares, W. (2005). The Gamelan. In Tuning, Timbre, Spectrum, Scale (pp. 199–220). Springer-Verlag. https://doi.org/10.1007/1-84628-113-X_10

Shen, G., Meltzoff, A. N., Weiss, S. M., & Marshall, P. J. (2020). Body representation in infants: Categorical boundaries of body parts as assessed by somatosensory mismatch negativity. Developmental Cognitive Neuroscience, 44, 100795. https://doi.org/10.1016/j.dcn.2020.100795

Shen, G., Weiss, S. M., Meltzoff, A. N., & Marshall, P. J. (2018). The somatosensory mismatch negativity as a window into body representations in infancy. International Journal of Psychophysiology, 134, 144–150. https://doi.org/10.1016/j.ijpsycho.2018.10.013

Singh, S. (2014). Magnetoencephalography: Basic principles. Annals of Indian Academy of Neurology, 17(5), 107. https://doi.org/10.4103/0972-2327.128676

Spackman, L. A., Towell, A., & Boyd, S. G. (2010). Somatosensory discrimination: An intracranial event-related potential study of children with refractory epilepsy. Brain Research, 1310, 68–76. https://doi.org/10.1016/j.brainres.2009.10.072

Squires, N. K., Squires, K. C., & Hillyard, S. A. (1975). Two varieties of long-latency positive waves evoked by unpredictable auditory stimuli in man. Electroencephalography and Clinical Neurophysiology, 38(4), 387–401. https://doi.org/10.1016/0013-4694(75)90263-1

Stefanics, G., Stefanics, G., Kremláček, J., & Czigler, I. (2014). Visual mismatch negativity: A predictive coding view. Frontiers in Human Neuroscience, 8(September), 1–19. https://doi.org/10.3389/fnhum.2014.00666

Strömmer, J. M., Tarkka, I. M., & Astikainen, P. (2014). Somatosensory mismatch response in young and elderly adults. Frontiers in Aging Neuroscience, 6. https://doi.org/10.3389/fnagi.2014.00293

Sultson, H., Vainik, U., & Kreegipuu, K. (2019). Hunger enhances automatic processing of food and non-food stimuli: A visual mismatch negativity study. Appetite, 133, 324–336. https://doi.org/10.1016/j.appet.2018.11.031

Sulykos, I., Kecskés-Kovács, K., & Czigler, I. (2015). Asymmetric effect of automatic deviant detection: The effect of familiarity in visual mismatch negativity. Brain Research, 1626, 108–117. https://doi.org/10.1016/j.brainres.2015.02.035

Sussman, E., Winkler, I., & Wang, W. (2003). MMN and attention: Competition for deviance detection. Psychophysiology, 40(3), 430–435. https://doi.org/10.1111/1469-8986.00045

Tervaniemi, M., Huotilainen, M., & Brattico, E. (2014). Melodic multi-feature paradigm reveals auditory profiles in music-sound encoding. Frontiers in Human Neuroscience, 0, 496. https://doi.org/10.3389/FNHUM.2014.00496

Tervaniemi, M., Janhunen, L., Kruck, S., Putkinen, V., & Huotilainen, M. (2016). Auditory Profiles of Classical, Jazz, and Rock Musicians: Genre-Specific Sensitivity to Musical Sound Features. Frontiers in Psychology, 6. https://doi.org/10.3389/fpsyg.2015.01900

Thornton, D., Harkrider, A. W., Jenson, D. E., & Saltuklaroglu, T. (2019). Sex differences in early sensorimotor processing for speech discrimination. Scientific Reports, 9(1). https://doi.org/10.1038/S41598-018-36775-5

Tiitinen, H., May, P., Reinikainen, K., & Näätänen, R. (1994). Attentive novelty detection in humans is governed by pre-attentive sensory memory. Nature, 372(6501), 90–92. https://doi.org/10.1038/372090A0

Vuust, P., Brattico, E., Glerean, E., Seppä Nen, M., Pakarinen, S., Tervaniemi, M., Nä, R., & Tä Nen, ¨. (2011). Special section on music in the brain: Research report New fast mismatch negativity paradigm for determining the neural prerequisites for musical ability. https://doi.org/10.1016/j.cortex.2011.04.026

Vuust, P., Brattico, E., Seppänen, M., Näätänen, R., & Tervaniemi, M. (2012). The sound of music: Differentiating musicians using a fast, musical multi-feature mismatch negativity paradigm. Neuropsychologia, 50(7), 1432–1443. https://doi.org/10.1016/j.neuropsychologia.2012.02.028

Vuust, P., Heggli, O. A., Friston, K. J., & Kringelbach, M. L. (2022). Music in the brain. Nature Reviews Neuroscience, 0123456789. https://doi.org/10.1038/s41583-022-00578-5

Wagner, L., Rahne, T., Plontke, S. K., & Heidekrüger, N. (2018). Mismatch negativity reflects asymmetric pre-attentive harmonic interval discrimination. PLOS ONE, 13(4), e0196176. https://doi.org/10.1371/journal.pone.0196176

Wang, Y., Huang, X., Zhang, J., Huang, S., Wang, J., Feng, Y., Jiang, Z., Wang, H., & Yin, S. (2022). Bottom-Up and Top-Down Attention Impairment Induced by Long-Term Exposure to Noise in the Absence of Threshold Shifts. Frontiers in Neurology, 13. https://doi.org/10.3389/fneur.2022.836683

Wanyan, X., Zhuang, D., Lin, Y., Xiao, X., & Song, J.-W. (2018). Influence of mental workload on detecting information varieties revealed by mismatch negativity during flight simulation. International Journal of Industrial Ergonomics, 64, 1–7. https://doi.org/10.1016/j.ergon.2017.08.004

Weber, C., Hahne, A., Friedrich, M., & Friederici, A. D. (2004). Discrimination of word stress in early infant perception: electrophysiological evidence. Cognitive Brain Research, 18(2), 149–161. https://doi.org/10.1016/j.cogbrainres.2003.10.001

Winkler, I., Reinikainen, K., & Näätänen, R. (1993). Event-related brain potentials reflect traces of echoic memory in humans. Perception & Psychophysics, 53(4), 443–449. https://doi.org/10.3758/BF03206788

Winkler, I., & Schröger, E. (2015). Auditory perceptual objects as generative models: Setting the stage for communication by sound. Brain and Language, 148, 1–22. https://doi.org/10.1016/J.BANDL.2015.05.003

Yüksel, M., Murphy, M., Rippe, J., Leicht, G., & Öngür, D. (2021). Decreased mismatch negativity and elevated frontal-lateral connectivity in first-episode psychosis. Journal of Psychiatric Research, 144, 37–44. https://doi.org/10.1016/j.jpsychires.2021.09.034

Zeng, G. Q., Xiao, X.-Z., Wang, Y., & Tse, C.-Y. (2022). Belief in biological origin of race (racial essentialism) increases sensitivities to cultural category changes measured by ERP mismatch negativity (MMN). Scientific Reports, 12(1), 4400. https://doi.org/10.1038/s41598-022-08399-3

Zora, H., Rudner, M., & Montell Magnusson, A. K. (2020). Concurrent affective and linguistic prosody with the same emotional valence elicits a late positive ERP response. European Journal of Neuroscience, 51(11), 2236–2249. https://doi.org/10.1111/ejn.14658


Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 Buletin Psikologi

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.