Optimizing the pH, Temperature, and Nitrogen Source for Bacillus sp. 01-Mediated Oil Palm Empty Fruit Bunch Bioconversion

https://doi.org/10.22146/agritech.103499

Hamka Nurkaya(1), Arbainsyah Arbainsyah(2), Krishna Purnawan Candra(3*), Marwati Marwati(4), Yuliani Yuliani(5)

(1) Samarinda State Polytechnic of Agriculture, Jl. Samratulangi, Kampus Sei Keledang, Samarinda 75131
(2) Samarinda State Polytechnic of Agriculture, Jl. Samratulangi, Kampus Sei Keledang, Samarinda 75131
(3) Department of Agricultural Product Technology, Agricultural Faculty of Mulawarman University, Jl. Tanah Grogot, Kampus Gunung Kelua, Samarinda 75119; Doctoral Program for Environmental Science of Mulawarman University, Jl. Sambaliung, Kampus Gunung Kelua, Samarinda 75119
(4) Department of Agricultural Product Technology, Agricultural Faculty of Mulawarman University, Jl. Tanah Grogot, Kampus Gunung Kelua, Samarinda 75119
(5) Department of Agricultural Product Technology, Agricultural Faculty of Mulawarman University, Jl. Tanah Grogot, Kampus Gunung Kelua, Samarinda 75119
(*) Corresponding Author

Abstract


This study aims to optimize the fermentation conditions of Bacillus sp.01 for the simultaneous production of cellulase and reducing sugars from oil palm empty fruit bunch (OPEFB). Milled OPEFB was used as the sole carbohydrate source in a mineral salt medium to investigate the effects of temperature (30-45 °C), pH (5.0-8.0), and nitrogen sources on the fermentation performance of Bacillus sp.01. The results showed that the highest sugar and cellulase production were achieved at pH 7.0 and 35 °C, yielding 2.52 mg/mL and 0.93 U/mL, respectively, in a 100 mL batch system enriched with 1% milled OPEFB. Regression analysis showed that the optimum sugar and cellulase production conditions were pH 6.73 and 32.5°C. Organic nitrogen sources (beef extract and peptone) showed better performance in promoting sugar and cellulase production than inorganic nitrogen sources (NH4 NO3 and (NH4 )2 SO4 ). These results show the potential of using OPEFB as a substrate for bioconversion by Bacillus sp.01, which could contribute to developing sustainable waste management strategies in the palm oil industry.

Keywords


Cellulase; lignocellulolytic; nitrogen source; bioconversion

Full Text:

PDF


References

Aguilar, A. D., Valle, V., Almeida-Naranjo, C. E., Naranjo, Á., Cadena, F., Kreiker, J., & Raggiotti, B. (2022). Characterization dataset of oil palm empty fruit bunch (OPEFB) fibers – Natural reinforcement/filler for materials development. Data in Brief, 45(September). https://doi.org/10.1016/j.dib.2022.108618

Akintola, A. I., Oyedeji, O., Adewale, I. O., & Bakare, M. K. (2019). Production and physicochemical properties of thermostable, crude cellulase from enterobacter cloacae IP8 isolated from plant leaf litters of Lagerstroemia indica Linn. Journal of Microbiology, Biotechnology and Food Sciences, 8(4), 989–994. https://doi.org/10.15414/jmbfs.2019.8.4.989-994

Alemayehu, G. F., Forsido, S. F., Tola, Y. B., Teshager, M. A., Assegie, A. A., & Amare, E. (2021). Proximate, mineral and anti-nutrient compositions of oat grains (Avena sativa) cultivated in Ethiopia: implications for nutrition and mineral bioavailability. Heliyon, 7(8), e07722. https://doi.org/10.1016/j.heliyon.2021.e07722

Amraini, S. Z., Nazaris, N. N., Andrio, D., Mardhiansyah, M., & Helwani, Z. (2023). Utilization of empty palm fruit bunches as a carbon source for cellulase production to reduce solid waste from palm oil. Leuser Journal of Environmental Studies, 1(1), 34–38. https://doi.org/10.60084/ljes.v1i1.41

Ariffin, H., Hassan, M. A., Shah, U. K. M., Abdullah, N., Ghazali, F. M., & Shirai, Y. (2008). Production of bacterial endoglucanase from pretreated oil palm empty fruit bunch by Bacillus pumilus EB3. Journal of Bioscience and Bioengineering, 106(3), 231–236. https://doi.org/10.1263/jbb.106.231

Awan, M. O. U., Iqbal, A., Rashid, M. I., Irshad, U., Hafeez, F., Ullah, F., Irshad, M., Ondrasek, G., Mustac, I., & Nazir, R. (2023). Proficient lignocellulolytic novel bacterial isolates from diversified Galiyat forests of lower Himalaya. Forests, 14(6), 1–16. https://doi.org/10.3390/f14061180

Bagewadi, Z. K., Mulla, S. I., & Ninnekar, H. Z. (2018). Optimization of endoglucanase production from Trichoderma harzianum strain HZN11 by central composite design under response surface methodology. Biomass Conversion and Biorefinery, 8(2), 305–316. https://doi.org/10.1007/s13399-017-0285-3

BPS-Statistics Indonesia. (2024). Plantation area by province 2023. BPS-Statisstics Indonesia. https://www.bps.go.id/id/statistics-table/2/MTMxIzI=/luas-tanaman-perkebunan-menurut-provinsi--ribu-hektar-.html

Chandna, P., Nain, L., Singh, S., & Kuhad, R. C. (2013). Assessment of bacterial diversity during composting of agricultural byproducts. BMC Microbiology, 13(99), pp.14. https://doi.org/10.1186/1471-2180-13-99

Chelab, R. L., & Yang, X. (2016). Optimization of the production of a b-1, 4-endoglucanase from a newly isolated Bacillus sp.RL1 by medium optimization and analysis different growth parameters. Research Journal of Applied Sciences, Engineering and Technology, 13(8), 664–674. https://doi.org/10.19026/rjaset.13.3052

Dini, I. R., & Afriani, E. (2022). The effect of lignocellulolytic bacteria consortium on composting empty oil palm fruit bunches. International Journal of Science and Research Archive, 7(1), 220–228. https://doi.org/10.30574/ijsra.2022.7.1.0130

Directorate of Food Crops Horticulture and Estate Crops Statistics. (2023). Indonesia Oil Palm Statistics 2022 (D. of F. C. H. and E. C. Statitics (ed.); 16th ed.). BPS-Statistics Indonesia.

dos Santos, A. C., Ximenes, E., Kim, Y., & Ladisch, M. R. (2019). Lignin–Enzyme Interactions in the Hydrolysis of Lignocellulosic Biomass. Trends in Biotechnology, 37(5), 518–531. https://doi.org/10.1016/j.tibtech.2018.10.010

Gusmawartati, & Sari, P. R. (2023). Cellulolytic bacteria as decomposers in dry empty fruit bunches composting. IOP Conference Series: Earth and Environmental Science, 1188(012002). https://doi.org/10.1088/1755-1315/1188/1/012002

Haqiqi, M. T., Bankeeree, W., Lotrakul, P., Pattananuwat, P., Punnapayak, H., Ramadhan, R., Kobayashi, T., Amirta, R., & Prasongsuk, S. (2021). Antioxidant and UV-Blocking Properties of a Carboxymethyl Cellulose-Lignin Composite Film Produced from Oil Palm Empty Fruit Bunch. ACS Omega, 6(14), 9653–9666. https://doi.org/10.1021/acsomega.1c00249

Helianti, I., Ulfah, M., Nurhayati, N., & Mulyawati, L. (2014). Cloning, Sequencing, and Expression of the Gene Encoding a Family 9 Cellulase from Bacillus licheniformis F11 in Escherichia coli and Bacillus megaterium, and Characterization of the Recombinant Enzymes. Microbiology Indonesia, 8(4), 147–160. https://doi.org/10.5454/mi.8.4.2

Ibrahim, M. F., Razak, M. N. A., Phang, L. Y., Hassan, M. A., & Abd-Aziz, S. (2013). Crude cellulase from oil palm empty fruit bunch by trichoderma asperellum UPM1 and aspergillus fumigatus UPM2 for fermentable sugars production. Applied Biochemistry and Biotechnology, 170(6), 1320–1335. https://doi.org/10.1007/s12010-013-0275-2

Kusumaningtyas, P., Candra, K. P., & Sahid, A. (2022). Changes in microbial community structure and diversity during decomposition of oil palm empty fruit bunches at different decomposition sites in humid tropical oil palm plantation. Agriculture and Natural Resources, 56, 511–524. https://doi.org/10.34044/j.anres.2022.56.3.08

Mahmoud, A.-M. Y., Asif, A. M. J.-F., & Hani, Z. A. (2014). Production, purification and characterization of cellulase from Streptomyces sp. African Journal of Microbiology Research, 8(4), 348–354. https://doi.org/10.5897/ajmr2013.6500

McCleary, B. V., & McGeough, P. (2015). A Comparison of polysaccharide substrates and reducing sugar methods for the measurement of endo-1,4-β-xylanase. Applied Biochemistry and Biotechnology, 177(5), 1152–1163. https://doi.org/10.1007/s12010-015-1803-z

Medina, J. D. C., Woiciechowski, A., Filho, A. Z., Nigam, P. S., Ramos, L. P., & Soccol, C. R. (2016). Steam explosion pretreatment of oil palm empty fruit bunches (EFB) using autocatalytic hydrolysis: A biorefinery approach. Bioresource Technology, 199, 173–180. https://doi.org/10.1016/j.biortech.2015.08.126

Mohtar, S. S., Tengku Malim Busu, T. N. Z., Md Noor, A. M., Shaari, N., & Mat, H. (2017). An ionic liquid treatment and fractionation of cellulose, hemicellulose and lignin from oil palm empty fruit bunch. Carbohydrate Polymers, 166, 291–299. https://doi.org/10.1016/j.carbpol.2017.02.102

Narra, M., Dixit, G., Divecha, J., Kumar, K., Madamwar, D., & Shah, A. R. (2014). Production, purification and characterization of a novel GH 12 family endoglucanase from aspergillus terreus and its application in enzymatic degradation of delignified rice straw. International Biodeterioration and Biodegradation, 88, 150–161. https://doi.org/10.1016/j.ibiod.2013.12.016

Naseeb, S., Sohail, M., Ahmad, A., & Khan, S. A. (2015). Production of xylanases and cellulases by Aspergillus fumigatus MS16 using crude lignocellulosic substrates. Pakistan Journal of Botany, 47(2), 779–784.

Nurkaya, H., Wathanachaiyingyong, O., Marwati, Chaiyanan, S., & Chaiyanan, S. (2017). Production of cellulase from palm oil industrial solid waste by Actinomycetes isolate 12.3.A. Asian Journal of Microbiology, Biotechnology & Environmental Sciences, 19(3), 483–490.

Onyia, D. C., Onyeneke, E. C., Okunwaye, T., Okogbenin, E. A., Okogbenin, B. O., Idabie, E., Asiriuwa, N. U., & Anemene, H. (2023). Cellulolytic fungi from palm pressed fiber, empty fruit bunch, and palm trunk. Asian Journal of Research in Biochemistry, 12(1), 8–15. https://doi.org/10.9734/ajrb/2023/v12i1224

Priya, I., Dhar, M. K., Bajaj, B. K., Koul, S., & Vakhlu, J. (2016). Cellulolytic activity of thermophilic Bacilli isolated from Tattapani hot spring sediment in North West Himalayas. Indian Journal of Microbiology, 56(2), 228–231. https://doi.org/10.1007/s12088-016-0578-4

Sethi, S., Datta, A., Gupta, B. L., & Gupta, S. (2013). Optimization of cellulase production from bacteria isolated from soil. ISRN Biotechnology, 2013(ID 985685), 1–7. https://doi.org/http://dx.doi.org/10.5402/2013/985685

Shyaula, M., Regmi, S., Khadka, D., Poudel, R. C., Dhakal, A., Koirala, D., Sijapati, J., Singh, A., & Maharjan, J. (2023). Characterization of thermostable cellulase from Bacillus licheniformis PANG L isolated from the Himalayan soil. International Journal of Microbiology, 2023. https://doi.org/10.1155/2023/3615757

Sikder, M. B. H., Rashid, S. S., Rahim, M. H. A., Ramli, A. N. M., Roslan, R., Sasi, A. A., & Mustafa, A. H. (2024). Enzymatic cellulose nanocrystal production from pretreated palm oil empty fruit bunch fibers. In S. Z. Abidin, M. Y. Taib, Z. M. Zain, & K. Azman (Eds.), materialstoday: PROCEEDINGS 6th National Conference for Postgraduate (pp. 249–253). https://doi.org/10.1016/j.matpr.2023.10.115

Sreena, C. ., Vimal, K. ., & Denoj, S. (2016). Production of cellulases and xylanase from Bacillus subtilis Mu S1 isolated from protected areas of Munnar wildlife division. Journal of Microbiology, Biotechnology and Food Sciences, 5(6), 500–504. https://doi.org/10.15414/jmbfs.2016.5.6.500-504

Susi, S., Ainuri, M., Wagiman, W., Afan, M., & Falah, F. (2023). High-yield alpha-cellulose from oil palm empty fruit bunches by optimizing thermochemical delignification processes for use as microcrystalline cellulose. International Journal of Biomaterials, 2023(ID 9169431), p.15. https://doi.org/https://doi.org/10.1155/2023/9169431

Thomas, L., Ram, H., & Singh, V. P. (2018). Inducible cellulase production from an organic solvent tolerant Bacillus sp. SV1 and evolutionary divergence of endoglucanase in different species of the genus Bacillus. Brazilian Journal of Microbiology, 49(2), 429–442. https://doi.org/10.1016/j.bjm.2017.05.010

Triwahyuni, E., Asri, I. P., Sugiwati, S., Wijaya, H. W., Anggraini, I. D., Marno, S., & Anindyawati, T. (2024). Cellulase production by Trichoderma reesei and its application in hydrolyzing oil palm rmpty fruit bunches. Cellulose Chemistry and Technology, 58(5–6), 495–503. https://doi.org/10.35812/CelluloseChemTechnol.2024.58.46

Welker, C. M., Balasubramanian, V. K., Petti, C., Rai, K. M., De Bolt, S., & Mendu, V. (2015). Engineering plant biomass lignin content and composition for biofuels and bioproducts. Energies, 8(8), 7654–7676. https://doi.org/10.3390/en8087654

Wu, T. Y., Mohammad, A. W., Jahim, J. M., & Anuar, N. (2010). Pollution control technologies for the treatment of palm oil mill effluent (POME) through end-of-pipe processes. Journal of Environmental Management, 91(7), 1467–1490. https://doi.org/10.1016/j.jenvman.2010.02.008

Yimlamai, B., Choorit, W., Chisti, Y., & Prasertsan, P. (2021). Cellulose from oil palm empty fruit bunch fiber and its conversion to carboxymethylcellulose. Journal of Chemical Technology and Biotechnology, 96(6), 1656–1666. https://doi.org/10.1002/jctb.6689

Zainudin, M. H. M., Hassan, M. A., Md Shah, U. K., Abdullah, N., Tokura, M., Yasueda, H., Shirai, Y., Sakai, K., & Baharuddin, A. S. (2014). Bacterial community structure and biochemical changes associated with composting of lignocellulosic oil palm empty fruit bunch. BioResources, 9(1), 316–335.



DOI: https://doi.org/10.22146/agritech.103499

Article Metrics

Abstract views : 12 | views : 5

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Krishna Purnawan Candra

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

agriTECH has been Indexed by:


agriTECH (print ISSN 0216-0455; online ISSN 2527-3825) is published by Faculty of Agricultural Technology, Universitas Gadjah Mada in colaboration with Indonesian Association of Food Technologies.


website statisticsView My Stats