Development and Characterization of Nano-fertilizer using Pseudo-Ternary Phase Diagram
Noor Azlina Masdor(1*), Nadia Izati Fadzil(2), Mohd Nor Mohd Rosmi(3), Muhamad Shafiq Abd Karim(4), Mohd Firdaus Mohd Anuar(5), Susilawati Kassim(6), Norhayu Asib(7), Suwanty Ridzuan Anoam(8)
(1) Industrial Crop Research Centre, MARDI Headquarters, Persiaran MARDI-UPM, 43400 Serdang, Selangor
(2) Biotechnology and Nanotechnology Research Centre, MARDI Headquarters, Persiaran MARDI-UPM, 43400 Serdang, Selangor; Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor
(3) Biotechnology and Nanotechnology Research Centre, MARDI Headquarters, Persiaran MARDI-UPM, 43400 Serdang, Selangor
(4) Biotechnology and Nanotechnology Research Centre, MARDI Headquarters, Persiaran MARDI-UPM, 43400 Serdang, Selangor
(5) Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor
(6) Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor
(7) Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor
(8) Laboratory Department, Orion Biosains Sdn. Bhd., Pusat Bandar Puchong, 47160 Puchong, Selangor
(*) Corresponding Author
Abstract
This study aims to develop and characterize a nano-fertilizer for foliar application on rock melon (Cucumis melo). The formulation of the nano-fertilizer was based on a ternary phase diagram, which showed the behavior of NPKTE within emulsion components made up of surfactants, oil, and water, with the isotropic region identified as the most stable. In addition, the formulation was prepared using a high-energy emulsification method, consisting of 25.04% Tween 80, 4.36% neem oil, 20.60% water, and 50% NPK-TE. The results showed that the optimized nano-emulsion had a particle size of 92.58 nm, with a polydispersity index of 0.156, a zeta potential of -39.8 mV, a surface tension of 40.67 m -1 , and a viscosity of 100.46 mPa s -1 . Morphological analysis of the optimized nano-fertilizer showed spherical particles, showing good stability. The formulation showed no phase separation during the centrifugation test and maintained stability at 3 different temperatures (4, 25, and 54 °C) with turbidity reduction values of 23.18%, 8.65%, and 42.90%, respectively, over a period of 60 days.
Keywords
Full Text:
PDFReferences
Alade, O.S., Mahmoud, M., Al Shehri, D.A. & Sultan, A.S. (2021). Rapid determination of emulsion stability using turbidity measurement incorporating artificial neural network (ANN): Experimental validation using video/optical microscopy and kinetic modeling. ACS Omega, 6(8), 5910–5920. https://doi.org/10.1021/acsomega.1c00017
Alege, G. O., Mercy, O. O., Haruna, U., Oni, I. J., & Danlami, D. (2022). Comparative Assessment of Selected Fruit Peels on Growth and Yield of Okra (Abelmoschus esculentus (L.) Moench). Journal of Biochemistry, Microbiology and Biotechnology, 10(1), Article 1. https://doi.org/10.54987/jobimb.v10i1.713
Anjali, C., Sharma, Y., Mukherjee, A., & Chandrasekaran, N. (2012). Neem oil (Azadirachta indica) nanoemulsion-a potent larvicidal agent against Culex quinquefasciatus. Pest Management Science, 68(2), 158–163. https://doi.org/10.1002/ps.22
Azeem, A., Rizwan, M., Ahmad, F. J., Iqbal, Z., Khar, R. K., Aqil, M., & Talegaonkar, S. (2009). Nanoemulsion components screening and selection: A technical note. AAPS PharmSciTech, 10(1), 69–76. https://doi.org/10.1208/s12249-008-9178-x
Bilia, A. R., Piazzini, V., Risaliti, L., Vanti, G., Casamonti, M., Wang, M., & Bergonzi, M. C. (n.d.). Nanocarriers: A Successful Tool to Increase Solubility, Stability and Optimise Bioefficacy of Natural Constituents. Current Medicinal Chemistry, 26(24), 4631–4656. https://doi.org/10.2174/0929867325666181101110050
Chaw Jiang, L., Basri, M., Omar, D., Abdul Rahman, M. B., Salleh, A. B., Raja Abdul Rahman, R. N. Z., & Selamat, A. (2012). Green nano-emulsion intervention for water-soluble glyphosate isopropylamine (IPA) formulations in controlling Eleusine indica (E. indica). Pesticide Biochemistry and Physiology, 102(1), 19–29. https://doi.org/10.1016/j.pestbp.2011.10.004
Chen, F., Wang, Y., Zheng, F., Wu, Y., & Liang, W. (2000). Studies on cloud point of agrochemical microemulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 175(1–2), 257–262. https://doi.org/10.1016/S0927-7757(00)00505-7
Choupanian, M., & Omar, D. (2018). Formulation and physicochemical characterization of neem oil nanoemulsions for control of Sitophilus oryzae (L., 1763) (Coleoptera: Curculionidae) and Tribolium castaneum (Herbst, 1797) (Coleoptera: Tenebrionidae). Turkiye Entomoloji Dergisi, 42(2), 127–139. https://doi.org/10.16970/entoted.398541
Choupanian, M., Omar, D., Basri, M., & Asib, N. (2017). Preparation and characterization of neem oil nanoemulsion formulations against Sitophilus oryzae and Tribolium castaneum adults. Journal of Pesticide Science, 42(4), 158–165. https://doi.org/10.1584/jpestics.D17-032
Costa, C., Medronho, B., Filipe, A., Mira, I., Lindman, B., Edlund, H., & Norgren, M. (2019). Emulsion formation and stabilization by biomolecules: The leading role of cellulose. Polymers, 11(10), 1–18. https://doi.org/10.3390/polym11101570
de Castro e Silva, P., Pereira, L. A. S., Lago, A. M. T., Valquíria, M., de Rezende, É. M., Carvalho, G. R., Oliveira, J. E., & Marconcini, J. M. (2019). Physical-Mechanical and Antifungal Properties of Pectin Nanocomposites / Neem Oil Nanoemulsion for Seed Coating. Food Biophysics, 14(4), 456–466. https://doi.org/10.1007/s11483-019-09592-0
Devi, S., Kumar, N., Kumar, A., Dhansu, P., Pazhany, A. S., Mann, A., Bhardwaj, A. K., & Sheoran, P. (2023). Potential Use of Nanofertilizers in Alleviating Stresses in Plants. In A. Kumar, P. Dhansu, & A. Mann (Eds.), Salinity and Drought Tolerance in Plants: Physiological Perspectives (521–535). Springer Nature. https://doi.org/10.1007/978-981-99-4669-3_26
Díaz-Blancas, V., Medina, D. I., Padilla-Ortega, E., Bortolini-Zavala, R., Olvera-Romero, M., & Luna-Bárcenas, G. (2016). Nanoemulsion formulations of fungicide tebuconazole for agricultural applications. Molecules, 21(10), 1–12. https://doi.org/10.3390/molecules21101271
Fadzil, N. I., Masdor, N. A., Rosmi, M. N. M., Wahid, N. S., Nor, N. S. M., Karim, M. S. A., & Anuar, M. F. M. (2024). Effects of MARDI Nano-Fertilizer Application Frequency on the Growth of Rock Melon. International Journal of Nanoelectronics and Materials (IJNeaM). https://doi.org/10.58915/ijneam.v17iJune.847
Guerra-Rosas, M. I., Morales-Castro, J., Ochoa-Martínez, L. A., Salvia-Trujillo, L., & Martín-Belloso, O. (2016). Long-term stability of food-grade nanoemulsions from high methoxyl pectin containing essential oils. Food Hydrocolloids, 52, 438–446. https://doi.org/10.1016/j.foodhyd.2015.07.017
Ibrahim, I. I. (2022). Efficacy of Biochar and NPK Fertilizer on Soil Properties and Yield of Okra (Abelmeschus esculentus L.) in Guinea Savanna Region of Nigeria. Journal of Environmental Bioremediation and Toxicology, 5(1), Article 1. https://doi.org/10.54987/jebat.v5i1.667
Janmohammadi, M., Amanzadeh, T., Sabaghnia, N., & Ion, V. (2016). Effect nano-silicon foliar application on safflower growth under organic and inorganic fertilizer regimes. Botanica Lithuanica, 22(1), 53–64. https://doi.org/10.1515/botlit-2016-0005
Komaiko, J. & McClements, D.J. (2015). Low-energy formation of edible nanoemulsions by spontaneous emulsification: Factors influencing particle size. Journal of Food Engineering, 146, 122–128. https://doi.org/10.1016/j.jfoodeng.2014.09.003
Kumari, S., Choudhary, R. C., Kumaraswamy, R. V., Bhagat, D., Pal, A., Raliya, R., Biswas, P., & Saharan͙, V. (2019). Zinc-functionalized thymol nanoemulsion for promoting soybean yield. Plant Physiology and Biochemistry, 145, 64–74. https://doi.org/10.1016/j.plaphy.2019.10.022
Massarweh, O., & Abushaikha, A. S. (2020). The use of surfactants in enhanced oil recovery: A review of recent advances. Energy Reports, 6, 3150–3178. https://doi.org/10.1016/j.egyr.2020.11.009
Montes de Oca Avalos, J. M., Candal, R., & Herrera, M. (2017). Nanoemulsions: Stability and physical properties. Current Opinion in Food Science, 16. https://doi.org/10.1016/j.cofs.2017.06.003
Mustafa, I., & Hussein, M. (2020). Synthesis and Technology of Nanoemulsion-Based Pesticide Formulation. Nanomaterials. 10(8):1608-1634. https://doi.org/10.3390/nano10081608
Rajonee, A. A., Zaman, S., & Imamul Huq, S. M. (2017). Preparation, characterization and evaluation of efficacy of phosphorus and potassium incorporated nanofertilizer. ANP, 6, 1–13.
Rana, R., Kuche, K., Jain, S., & Chourasia, M. K. (2024). Addressing overlooked design considerations for nanoemulsions. Nanomedicine, 19(30), 2727–2745. https://doi.org/10.1080/17435889.2024.2429947
Saberi, A.H., Fang, Y. & McClements, D.J. (2015). Formation of thermally reversible optically transparent emulsion-based delivery systems using spontaneous emulsification. Soft 163 Matter, 11(48), 9321–9329. https://doi.org/10.3390/nano10081608
Saharan, V. (2010). Effect of gibberellic acid combined with saponin on shoot elongation of Asparagus officinalis. Biologia Plantarum, 54(4), 740–742. https://doi.org/10.1007/s10535-010-0132-x
Sarheed, O., Dibi, M., & Ramesh, K. V. R. N. S. (2020). Studies on the Effect of Oil and Surfactant on the Formation of Alginate-Based O/W Lidocaine Nanocarriers Using Nanoemulsion Template. Pharmaceutics, 12(12), Article 12. https://doi.org/10.3390/pharmaceutics12121223
Wahgiman, N. A., Salim, N., Rahman, M. B. A., & Ashari, S. E. (2019). Optimization of nanoemulsion containing gemcitabine and evaluation of its cytotoxicity towards human fetal lung fibroblast (MRC5) and human lung carcinoma (A549) cells. International Journal of Nanomedicine, 14, 7323–7338. https://doi.org/10.2147/IJN.S212635
Article Metrics
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Noor Azlina Masdor

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
agriTECH has been Indexed by:
agriTECH (print ISSN 0216-0455; online ISSN 2527-3825) is published by Faculty of Agricultural Technology, Universitas Gadjah Mada in colaboration with Indonesian Association of Food Technologies.







