Study of COD Removal Rate on a Sequencing Batch Reactor (SBR) Treating Tapioca Wastewater

https://doi.org/10.22146/agritech.29271

Happy Mulyani(1*), Gregorius Prima Indra Budianto(2), Margono Margono(3), Mujtahid Kaavessina(4)

(1) Chemical Engineering Study Program, Faculty of Engineering, Setia Budi University, Jl. Letjend Sutoyo, Mojosongo, Surakarta 57126
(2) Chemical Engineering Study Program, Faculty of Engineering, Setia Budi University, Jl. Letjend Sutoyo, Mojosongo, Surakarta 57126
(3) Chemical Engineering Study Program, Faculty of Engineering, Sebelas Maret University Jl. Ir. Sutami 36 A, Kentingan, Surakarta 57126
(4) Chemical Engineering Study Program, Faculty of Engineering, Sebelas Maret University Jl. Ir. Sutami 36 A, Kentingan, Surakarta 57126
(*) Corresponding Author

Abstract


Industrial wastewater treatment using Sequencing Batch Reactor (SBR) can improve effluent quality at lower cost than that obtained by other biological treatment methods. Further optimization is still required to enhance effluent quality until it meets standard quality and to reduce the operating cost of treatment of high strength organic wastewater. The purpose of this research was to determine the effect of pretreatment (pH adjustment and prechlorination) and aeration time on effluent quality and COD removal rate in tapioca wastewater treatment using SBR. Pretreatment was done by (1) adjustment of tapioca wastewater pH to control (4.92), 7, and 8, and (2) tapioca wastewater prechlorination at pH 8 during hour using calcium hypochlorite in variation dosages 0, 2, 4, 6 mg/L Cl2, SBR operation was conducted according to following steps: (1) Filling of pre-treated wastewater into a bioreactor during 1 hour, and (2) aeration of the mixture of tapioca wastewater and activated sludge during 8 hours. Effluent sample was collected at every 2-hours aeration for COD analysis. COD removal rate mathematical formula was got by first deriving the best fit function between aeration time and COD. Optimum aeration time resulting in no COD removal rate. The value of COD effluent and its removal rate in optimum aeration time was used to determine the recommended of operation condition of pretreatment. Research result shows that chosen pH operation condition is pH 8. Prechorination can make effluent quality which meets standard quality and highest COD removal rate. The chosen Cl2 dosage is 6 mg/L.


Keywords


Aeration time; COD; pH; prechlorination; SBR

Full Text:

PDF


References

Au, M. T., Pasupuleti, J., & Chua, K. H. (2013). Strategies to improve energy efficiency in sewage treat ment plants. In IOP Conference Series: Earth and Environmental Science (Vol. 16). https://doi.org/10.1088/1755-1315/16/1/012033.

Avessa, I., Yusuf, B., & Alimuddin. (2016). Penurunan kadar Cr 3+ [ Kromium (III)] dan TSS (total suspended solid) pada limbah cair laboratorium dengan penggunaan metode presipitasi. Jurnal Kimia Mulawarman, 14:7–12.

Aygun, A., Nas, B., & Berktay, A. (2008). Influence of high organic loading rates on COD removal and sludge production in moving bed biofilm reactor. Environmental Engineering Science 25(9):1311–1316. https://doi.org/10.1089/ees.2007.0071.

BSN. (2009). SNI 6989.2:2009 Mengenai Cara Uji Kebutuhan Oksigen Kimiawi (Chemical Oxygen Demand/COD) dengan Refluks Tertutup Secara Spektrofotometri.

Chan, Y. J., Chong, M. F., Law, C. L., & Hassell, D. G. (2009). A review on anaerobic-aerobic treatment of industrial and municipal wastewater. Chemical Engineering Journal 155:1-18. https://doi.org/10.1016/j.cej.2009.06.041.

Chapra, S. C., & Canale, R. P. (2015). Numerical methods for engineers. Mathematics and Computers in Simulation (Vol. 33). https://doi.org/10.1016/0378-4754(91)90127-O.

Crittenden, J. C., Trussell, R. R., Hand, D. W., Howe, K. J., & Tchobanoglous, G. (2012). Disinfection. In MWH’s Water Treatment: Principles and Design, Third Edition (pp. 903–1032). https://doi.org/10.1002/9781118131473.ch13.

Elmolla, E. S., Ramdass, N., & Chaudhuri, M. (2012). Optimization of sequencing batch reactor operating conditions for treatment of high-strength pharmaceutical wastewater. Journal of Environmental Science and Technology, 5(6):452–459. https://doi.org/10.3923/jest.2012.452.459.

Glymph, T. (2005). Wastewater Microbiology: A Handbook for Operators. United States of America:American Water Works Association.

Gunasekara, S.N. (2011). Improvements on Municipal Wastewater Treatment by: Chemical-Pre-precipitation with Ca2+ & Mg2+ and Acid Hydrolisis of Toilet Paper. Royal Institute of Tehcnology:Master of Science Thesis.

Ibrahim, H. T. Y. (2017). Study of Aeration TimeEffect on COD and Ammonia removal by Sequencing Batch Reactor. Journal of Babylon University 25(1):276–284.

Indrayatie, E.R., Utomo, W.H., Handayanto, E., & Anderson, C. W. N. (2013). The Use of Vetiver (Vetiveria zizanioides L.) for the Remediation of Wastewater Discharged from Tapioca Factories. Int. J. Environment and Waste Management 12(1):1–16.

Isyuniarto, Usada, W., & Purwadi, A. (2007). Degradasi Limbah Cair Industri Kertas Menggunakan Oksidan Ozon dan Kapur. In Prosiding PPI-PDIPTN (pp. 55–60). Yogyakarta.

Jain, A., & Khambete, M. A. (2013). Role of Strong Oxidants in Reducing Cod: Case Study At Common Effluent Treatment Plant Vapi, Guj., India. In Proceedings of the 13th International Conference on Environmental Science and Technology (pp. 5–7). Athens. Retrieved from http://www.gnest.org/proceedings/cest2013/public_html/papers/0113.pdf

Jern, N. G. W. (2006). Industrial Wastewater Treatment. London: Imperial College Press.

Jideofor, I. M. (2015). Chemical Adjustment of Effluent From Cassava Processing Plant Prior To Safe Disposal. Nigerian Journal of Technology, 34(4):883–889.

Kheiredine, B., Derbal, K., & Bencheikh-Lehocine, M. (2014). Effect of Starting pH on the Produced Methane from Dairy Wastewater in Thermophilic Phase. Chemical Engineering Transactions 38:511–516. https://doi.org/10.3303/CET1438086.

Kiusalaas, J. (2005). Numerical Methods in Engineering with MATLAB. Engineering (Vol. 40). https://doi.org/10.1017/CBO9780511614682.

Liu, K., Wei, B., Su, Z., Yan, D., & Qin, X. (2010). Simulated Test Studying on CN- Containing Casava Starch Industry Wastewater Treated by Anaerobic Process. Proceedings of the Conference of Environmental Pollution and Public Health 2010. Wuhan, China 10-11 September 2010.

Mulyani, H., & Pamungkas, G. S. (2016). The Influence of Calcium Hypochlorite Dosage Adjustment on Tapioca Wastewater Pre-chlorination Toward Efficiency of Activated Sludge Treatment. Molekul, 11(2), 239. https://doi.org/10.20884/1.jm.2016.11.2.213.

Mulyani, H., Sasongko, S. B., & Soetrisnanto, D. (2012). Pengaruh Preklorinasi Terhadap Proses Start Up Pengolahan Limbah Cair Tapioka Sistem Anaerobic Baffled Reactor. Momentum, 8(1), 21–27.

Nguyen, P. T. T., Van Nguyen, P., Truong, H. T. B., & Bui, H. M. (2016). The formation and stabilization of aerobic granular sludge in a sequencing batch airlift reactor for treating tapioca-processing wastewater. Polish Journal of Environmental Studies 25(5):2077–2084. https://doi.org/10.15244/pjoes/62736.

Okunade, D. A., & Adekalu, K. O. (2013). Physico-Chemical Analysis of Contaminated Water Resources Due to Cassava Wastewater Effluent Disposal. European International Journal of Science and Technology 2(6):75–84.

Pandian, P.S., & Meenambal, T. (2017). Development and Performance Analysis of Two-Stage Biological Process Adopted in Sago Industries for Treatment of High Organic Effluent. International Journal of Research in Advent Technology 5(6):7–11.

Pickup, J. (2010). Environmental Safety of Halogenated Organic By-Products From use of Active Chlorine. Euro Chlor Science Dossier 15, (15), 1–42.

Purwaningsih, I.S., Chairul, & Amraini, S. Z. (2008). Kinetika Reaksi Pengolahan Limbah Cair dengan Sistem Lumpur Aktif Menggunakan EM 4 sebagai Kultur Mikroorganisme. In Prosiding Seminar Nasional Teknik Kimia Oleo & Petrokimia Indonesia (pp. 1–8). Pekan Baru.

Purwita, L.D. & Soewondo, P. (2010). P Penyisihan Senyawa Organik Biowaste Fraksi Cair Menggunakan Sequencing Batch Reactor Anaerob. Jurnal Teknik Lingkungan 16(2):138–149.

Titiresmi. (2007). Penurunan Kadar COD Dalam Limbah Industri Permen Dengan Menggunakan Reaktor Lumpur Aktif. J. Tek. Ling 8(2):91–96.

Yan, L., Liu, Y., Ren, Y., Wang, X., Liang, H., & Zhang, Y. (2013). The effect of pH on the efficiency of an SBR processing piggery wastewater. Biotechnology and Bioprocess Engineering 18(6):1230–1237. https://doi.org/10.1007/s12257-013-0292-6

Yang, W. Y., Cao, W., Chung, T.-S., & Morris, J. (2005). Applied Numerical Methods Using MATLAB®. America (Vol. 47). https://doi.org/10.1002/0471705195

Yazid, F.R., Syafrudin, dan Samudro, H. (2012). Pengaruh Variasi Konsentrasi dan Debit Pada Pengolahan Air Artificial (Campuran Grey Water dan Black Water) Menggunakan Reaktor UASB. Presipitasi 9(1):32–43.



DOI: https://doi.org/10.22146/agritech.29271

Article Metrics

Abstract views : 4888 | views : 4363

Refbacks

  • There are currently no refbacks.




Copyright (c) 2019 Happy Mulyani, Gregorius Prima Indra Budianto, Margono Margono, Mujtahid Kaavessina

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

agriTECH has been Indexed by:


agriTECH (print ISSN 0216-0455; online ISSN 2527-3825) is published by Faculty of Agricultural Technology, Universitas Gadjah Mada in colaboration with Indonesian Association of Food Technologies.


website statisticsView My Stats