Sifat Fisik, Amilograf, dan Morfologi Pati Biji Lai (Durio kutejensis) Asetilasi Menggunakan Asetat Anhidrat

https://doi.org/10.22146/agritech.33809

Siti Masithah Fiqtinovri(1*), Ashri Mukti Benita(2), Djagal Wiseso Marseno(3), Yudi Pranoto(4)

(1) Program Studi Agroteknologi, Fakultas Pertanian, Universitas Kaltara, Jl. Sengkawit, Tanjung Selor, Kalimantan Utara 77212
(2) Teknologi pangan, Fakultas Sains dan Teknologi, Universitas Nahdlatul Ulama Purwokerto, Jl. Sultan Agung 42, Purwokerto Selatan 53144
(3) Departemen Teknologi Pangan dan Hasil Pertanian, Fakultas Teknologi Pertanian, Universitas Gadjah Mada, Jl. Flora No. 1, Bulaksumur, Yogyakarta 55281
(4) Departemen Teknologi Pangan dan Hasil Pertanian, Fakultas Teknologi Pertanian, Universitas Gadjah Mada, Jl. Flora No. 1, Bulaksumur, Yogyakarta 5528
(*) Corresponding Author

Abstract


Lai (Durio kutejensis) seed starches have a high retrogradation ability and low paste stability so that its function in food industry is less widespread. This phenomenon can be overcome by starches modification, such as acetylation using asetat anhidrat as modifying agent. This study aims to observe the physical properties of acetate starch such as swelling power and solubility, morphological characteristics, and amylographic properties (retrograde rate, viscosity, gelatinization temperature) and the results will be compared to native starch. Lai seed starches was acetylated using asetat anhidrat 3% and 4%, the reaction time variation was 15, 30, 45 and 60 minutes and the reaction pH used ranged from 8-8.5. Acetylation with a different amount of asetat anhidrat (3% and 4%) and different time of reaction (15, 30, 45, 60 min) give an optimum result of DS in 4% of asetat anhidrat with 15 minute of reaction time. DS that reached at those condition is 0.22 and has the same tipe as native starch (tipe A). The result of FTIR shown that there’s a new peak at 1735 cm-1 was a part of carbonyl group and the weakening of hydroxyl group peak of acetate starch. Acetylation decreased the final viscosity from 1472 cP to 1170 cP, setback value from 172 cM to 31cP, and breakdown from 798 cP to 350 cP. Meanwhile, the pasting temperature increased after acetylation from 71.82 °C to 76.05 °C. These result indicate that acetylation increased the resistance of retrogradation, and high pasting stability.

Keywords


Acetylation; lai; starch modification; starch of lai seed

Full Text:

PDF


References

Adebowale, K. O., Olu-Owolabi, B. I., Olawumi, E. K., & Lawal, O. S. (2005). Functional properties of native, physically and chemically modified breadfruit (Artocarpus artilis) starch. Industrial Crops and Products, 21(3), 343–351. https://doi.org/10.1016/j.indcrop.2004.05.002

Ashri M. Benita, Siti M. Fiqtinovri, Djagal W. Marseno, Yudi P. (2017). PENGARUH FOSFORILASI TERHADAP SIFAT FISIK, KIMIA, DAN PEMASTAAN PATI BIJI LAI ( Durio kutejensis ). In Agnes Murdiati dkk. (Ed.), Prosiding Seminar Nasional Pangan dan Hasil Pertanian 2016 : Pengembangan Pangan Lokal untuk Meningkatkan Daya Saing Global. Yogyakarta: Gdjah Mada University.

Ayucitra, A. (2012). Preparation and Characterisation of Acetylated Corn Starches. International Journal of Chemical Engineering and Applications, 3(3), 156–159. https://doi.org/10.7763/IJCEA.2012.V3.178

Bartz, J., Goebel, J. T., Giovanaz, M. A., Zavareze, E. D. R., Schirmer, M. A., & Dias, A. R. G. (2015). Acetylation of barnyardgrass starch with acetic anhydride under iodine catalysis. Food Chemistry, 178, 236–242. https://doi.org/10.1016/j.foodchem.2015.01.095

Bello-Pérez, L. A., Agama-Acevedo, E., Zamudio-Flores, P. B., Mendez-Montealvo, G., & Rodriguez-Ambriz, S. L. (2010). Effect of low and high acetylation degree in the morphological, physicochemical and structural characteristics of barley starch. LWT - Food Science and Technology, 43(9), 1434–1440. https://doi.org/10.1016/j.lwt.2010.04.003

Cahyana, P. T., Setyowati, K., Sunarti, T. C., Haryanto, B., Agroindustri, P. T., & Barat, J. (2011). Pembuatan pati beras termodifikasi dan pengaruh kadar amilosa terhadap sifat fungsionalnya 1, 13(3), 192–197.

Chen, Z., Schols, H. A., & Voragen, A. G. J. (2004). Differently sized granules from acetylated potato and sweet potato starches differ in the acetyl substitution pattern of their amylose populations. Carbohydrate Polymers, 56(2), 219–226. https://doi.org/10.1016/j.carbpol.2004.02.004

Chi, H., Xu, K., Wu, X., Chen, Q., Xue, D., Song, C., … Wang, P. (2008). Effect of acetylation on the properties of corn starch. Food Chemistry, 106(3), 923–928. https://doi.org/10.1016/j.foodchem.2007.07.002

Colussi, R., El Halal, S. L. M., Pinto, V. Z., Bartz, J., Gutkoski, L. C., Zavareze, E. da R., & Dias, A. R. G. (2015). Acetylation of rice starch in an aqueous medium for use in food. LWT - Food Science and Technology, 62(2), 1076–1082. https://doi.org/10.1016/j.lwt.2015.01.053

Colussi, R., Pinto, V. Z., El Halal, S. L. M., Vanier, N. L., Villanova, F. A., Marques E Silva, R., … Dias, A. R. G. (2014). Structural, morphological, and physicochemical properties of acetylated high-, medium-, and low-amylose rice starches. Carbohydrate Polymers, 103(1), 405–413. https://doi.org/10.1016/j.carbpol.2013.12.070

Colussi, R., Zanella, V., Lisie, S., El, M., Biduski, B., Prietto, L., … Dias, G. (2016). Acetylated rice starches films with different levels of amylose : Mechanical , water vapor barrier , thermal , and biodegradability properties. Food Chemistry. https://doi.org/10.1016/j.foodchem.2016.10.129

Damat, Haryadi, Marsono Y, Nur Cahyanto. (2008). EFEK pH DAN KONSENTRASI BUTIRAT ANHIDRIDA. Agritech, 28(2), 63–69.

Diop, C. I. K., Li, H. L., Xie, B. J., & Shi, J. (2011). Effects of acetic acid/acetic anhydride ratios on the properties of corn starch acetates. Food Chemistry, 126(4), 1662–1669. https://doi.org/10.1016/j.foodchem.2010.12.050

El Halal, S. L. M., Colussi, R., Biduski, B., Evangelho, J. A. do, Bruni, G. P., Antunes, M. D., … Zavareze, E. da R. (2017). Morphological, mechanical, barrier and properties of films based on acetylated starch and cellulose from barley. Journal of the Science of Food and Agriculture, 97(2), 411–419. https://doi.org/10.1002/jsfa.7773

Garg, S., & Jana, A. K. (2011). Characterization and evaluation of acylated starch with different acyl groups and degrees of substitution. Carbohydrate Polymers, 83(4), 1623–1630. https://doi.org/10.1016/j.carbpol.2010.10.015

Halal, S. L. M. El, Colussi, R., Pinto, V. Z., Bartz, J., Radunz, M., Carreño, N. L. V., … Zavareze, E. D. R. (2015). Structure, morphology and functionality of acetylated and oxidised barley starches. Food Chemistry, 168, 247–256. https://doi.org/10.1016/j.foodchem.2014.07.046

Han, F., Gao, C., Liu, M., Huang, F., & Zhang, B. (2013). Synthesis, optimization and characterization of acetylated corn starch with the high degree of substitution. International Journal of Biological Macromolecules, 59, 372–376. https://doi.org/10.1016/j.ijbiomac.2013.04.080

Huang, J., Schols, H. A., Jin, Z., Sulmann, E., & Voragen, A. G. J. (2007). Pasting properties and (chemical) fine structure of acetylated yellow pea starch is affected by acetylation reagent type and granule size. Carbohydrate Polymers, 68(3), 397–406. https://doi.org/10.1016/j.carbpol.2006.12.019

Kim, M. J., Choi, S. J., Shin, S. I., Sohn, M. R., Lee, C. J., Kim, Y., … Moon, T. W. (2008). Resistant glutarate starch from adlay: Preparation and properties. Carbohydrate Polymers, 74(4), 787–796. https://doi.org/10.1016/j.carbpol.2008.04.043

Kittipongpatana, O. S., Chaichanasak, N., Kanchongkittipoan, S., Panturat, A., Taekanmark, T., & Kittipongpatana, N. (2006). An aqueous film-coating formulation based on sodium carboxymethyl mungbean starch. Starch/Staerke, 58(11), 587–589. https://doi.org/10.1002/star.200600528

Lawal, O. S. (2004). Composition, physicochemical properties and retrogradation characteristics of native, oxidised, acetylated and acid-thinned new cocoyam (Xanthosoma sagittifolium) starch. Food Chemistry, 87(2), 205–218. https://doi.org/10.1016/j.foodchem.2003.11.013

Matveev, Y. I., van Soest, J. J. G., Nieman, C., Wasserman, L. A., Protserov, V. A., Ezernitskaja, M., & Yuryev, V. P. (2001). The relationship between thermodynamic and structural properties of low and high amylose maize starches. Carbohydrate Polymers, 44(2), 151–160. https://doi.org/http://dx.doi.org/10.1016/S0144-8617(00)00211-3

Mbougueng, P. D., Tenin, D., Scher, J., & Tchiégang, C. (2012). Influence of acetylation on physicochemical, functional and thermal properties of potato and cassava starches. Journal of Food Engineering, 108(2), 320–326. https://doi.org/10.1016/j.jfoodeng.2011.08.006

Miao, L., Zhao, S., Zhang, B., Tan, M., Niu, M., Jia, C., & Huang, Q. (2018). Understanding the supramolecular structures and pasting features of adlay seed starches. Food Hydrocolloids. https://doi.org/10.1016/j.foodhyd.2018.05.034

Phillips, D. L., Liu, H., Pan, D., & Corke, H. (1999). General application of Raman spectroscopy for the determination of level of acetylation in modified starches. Cereal Chemistry, 76(3), 439–443. https://doi.org/10.1094/CCHEM.1999.76.3.439

Polyana, F. J., & Puturuhu, B. R. I. (2016). Preparasi dan Karakterisasi Pati Sagu Asetil. Buletin Penelitian BIAM, VI(56), 10–13.

Rizka Amalia, Andri C. Kumoro. (2016). Analisis sifat fisikokimia dan uji korelasi regresi antara nilai derajat substitusi dengan swelling power dan solubility pada tepung gadung (. Inovasi Teknik Kimia, 1(1), 17–26.

Saartrat, S., Puttanlek, C., Rungsardthong, V., & Uttapap, D. (2005). Paste and gel properties of low-substituted acetylated canna starches. Carbohydrate Polymers, 61(2), 211–221. https://doi.org/10.1016/j.carbpol.2005.05.024

Santoso, P., & Saleh, G. (2013). Phylogenetic relationships amongst 10 Durio species based on PCR-RFLP analysis of two chloroplast genes. Indonesian Journal of Agriculture, 6(1), 20–27. Retrieved from http://203.176.181.72/index.php/ijas/article/view/639

Shah, A., Masoodi, F. A., Gani, A., & Ashwar, B. A. (2017). LWT - Food Science and Technology Physicochemical , rheological and structural characterization of acetylated oat starches. LWT - Food Science and Technology, 80, 19–26. https://doi.org/10.1016/j.lwt.2017.01.072

Simsek, S., Ovando-Martínez, M., Whitney, K., & Bello-Pérez, L. A. (2012). Effect of acetylation, oxidation and annealing on physicochemical properties of bean starch. Food Chemistry, 134(4), 1796–1803. https://doi.org/10.1016/j.foodchem.2012.03.078

Singh, N., Chawla, D., & Singh, J. (2004). Influence of acetic anhydride on physicochemical, morphological and thermal properties of corn and potato starch. Food Chemistry, 86(4), 601–608. https://doi.org/10.1016/j.foodchem.2003.10.008

Skoog, D. a, Holler, F. J., & Nieman, T. a. (1998). Principles of Instrumental Analysis, Brooks/Cole. The sections on atomic and molecular spectroscopy serve as excellent introductions to the subject. https://doi.org/10.1090/S0002-9904-1936-06390-1

Sodhi, N. S., & Singh, N. (2005). Characteristics of acetylated starches prepared using starches separated from different rice cultivars. Journal of Food Engineering, 70(1), 117–127. https://doi.org/10.1016/j.jfoodeng.2004.09.018

Susetyo, Y. A., Hartini, S., & Cahyanti, M. N. (2016). Optimasi Kandungan Gizi Tepung Ubi jalar ( Ipomoea batatas L .) Terfermentasi Ditinjau dari Dosis Penambahan Inokulum Angkak Serta Aplikasinya dalam Pembuatan Mie Basah. Jurnal Aplikasi Teknologi Pangan, 5(2), 44–51.

Wongsagonsup, R., Pujchakarn, T., Jitrakbumrung, S., Chaiwat, W., Fuongfuchat, A., Varavinit, S., … Suphantharika, M. (2014). Effect of cross-linking on physicochemical properties of tapioca starch and its application in soup product. Carbohydrate Polymers, 101(1), 656–665. https://doi.org/10.1016/j.carbpol.2013.09.100

Xu, J., & Shi, Y. (2019). Position of acetyl groups on anhydroglucose unit in acetylated starches with intermediate degrees of substitution. Carbohydrate Polymers, 220(May), 118–125. https://doi.org/10.1016/j.carbpol.2019.05.059

Xu, Y., Miladinov, V., & Hanna, M. A. (2004). Synthesis and characterization of starch acetates with high substitution. Cereal Chemistry, 81(6), 735–740. https://doi.org/10.1094/CCHEM.2004.81.6.735

Yu, S., Ma, Y., Menager, L., & Sun, D. W. (2012). Physicochemical Properties of Starch and Flour from Different Rice Cultivars. Food and Bioprocess Technology, 5(2), 626–637. https://doi.org/10.1007/s11947-010-0330-8

Zhang, L., Xie, W., Zhao, X., Liu, Y., & Gao, W. (2009). Study on the morphology, crystalline structure and thermal properties of yellow ginger starch acetates with different degrees of substitution. Thermochimica Acta, 495(1–2), 57–62. https://doi.org/10.1016/j.tca.2009.05.019



DOI: https://doi.org/10.22146/agritech.33809

Article Metrics

Abstract views : 2714 | views : 5347

Refbacks

  • There are currently no refbacks.




Copyright (c) 2020 Siti Masithah Fiqtinovri, Ashri Mukti Benita, Djagal Wiseso Marseno, Yudi Pranoto

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

agriTECH has been Indexed by:


agriTECH (print ISSN 0216-0455; online ISSN 2527-3825) is published by Faculty of Agricultural Technology, Universitas Gadjah Mada in colaboration with Indonesian Association of Food Technologies.


website statisticsView My Stats