Hydrogen and Methane Production Under Conditions of Anaerobic Digestion of Key-Lime and Cabbage Wastes


Gaweł Sołowski(1*), Izabela Konkol(2), Bartosz Hrycak(3), Dariusz Czylkowski(4)

(1) Institute of Fluid Machinery of Polish Academy of Science, Gdansk
(2) Institute of Fluid Machinery of Polish Academy of Science, Gdansk
(3) Institute of Fluid Machinery of Polish Academy of Science, Gdansk
(4) Institute of Fluid Machinery of Polish Academy of Science, Gdansk
(*) Corresponding Author


In this article, the results of key lime fruit (Citrus aurantifolia) wastes and cabbage (Brassica L.) wastes anaerobic digestion are presented. Anaerobic digestion of the wastes was performed in batch process, neutral pH (key-lime 7.47 and cabbage 7.67) and substrate concentration of Volatile Suspended Solids (VSS) 10 gVSS/L. One of the aims of this research was to check the availability of these substrates to be the source of methane and hydrogen. Key lime wastes produced 32 times more methane than raw cabbage. However, hydrogen production from cabbage was 149 times higher than key lime. The percentage of methane production in cabbage was up to 81% and in key lime was up to 75%. This research showed from the substrates comparison that efficient hydrogen production is less dependent on low pKa, pH than on total solids of the substrates.


Anaerobic digestion; dark fermentation; hydrogen; methane; key-lime

Full Text:



Braguglia, C. M., Gallipoli, A., & Gianico, A. (2018). Anaerobic bioconversion of food waste into energy : a critical review. Bioresource Technology, 248(January), 37–56. http://doi.org/10.1016/j.biortech.2017.06.145

Cheng, J., Yue, L., Ding, L., Li, Y. Y., Ye, Q., Zhou, J., … Lin, R. (2019). Improving fermentative hydrogen and methane production from an algal bloom through hydrothermal/steam acid pretreatment. International Journal of Hydrogen Energy, 44(12), 5812–5820. http://doi.org/10.1016/j.ijhydene.2019.01.046

Chi, C. H., Chen, K. W., Huang, J. J., Chuang, Y. C., & Wu, M. H. (1995). Gas composition in Clostridium septicum gas gangrene. Journal of the Formosan Medical Association = Taiwan Yi Zhi, 94(12), 757–759.

Chojnacka, A., Szczęsny, P., Błaszczyk, M. K., Zielenkiewicz, U., Detman, A., Salamon, A., & Sikora, A. (2015). Noteworthy facts about a methane-producing microbial community processing acidic effluent from sugar beet molasses fermentation. PLoS ONE, 10(5). http://doi.org/10.1371/journal.pone.0128008

Detman, A., Mielecki, D., Pleśniak, Ł., Bucha, M., Janiga, M., Matyasik, I., Sikora, A. (2018). Methane-yielding microbial communities processing lactate-rich substrates: A piece of the anaerobic digestion puzzle. Biotechnology for Biofuels, 11(1). http://doi.org/10.1186/s13068-018-1106-z

Grosser, A., & Neczaj, E. (2016). Enhancement of biogas production from sewage sludge by addition of grease trap sludge. Energy Conversion and Management, 125, 301–308. http://doi.org/10.1016/j.enconman.2016.05.089

Hawkes, F. R., Dinsdale, R., Hawkes, D. L., & Hussy, I. (2002). Sustainable fermentative hydrogen production: Challenges for process optimisation. International Journal of Hydrogen Energy, 27(11–12), 1339–1347. http://doi.org/10.1016/S0360-3199(02)00090-3

Jaiswal, A. K., Gupta, S., & Abu-Ghannam, N. (2012). Optimisation of lactic acid fermentation of York cabbage for the development of potential probiotic products. International Journal of Food Science & Technology, 47(8), 1605–1612. http://doi.org/10.1111/j.1365-2621.2012.03010.x

Kozłowski, K., Lewicki, A., Malińska, K., & Wei, Q. (2019). Current State , Challenges and Perspectives of Biological Production of Hydrogen in Dark Fermentation Process in Poland, 20(2), 146–160. http://doi.org/10.12911/22998993/97270

Kurtz, J., Sprik, S., & Bradley, T. H. (2019). Review of transportation hydrogen infrastructure performance and reliability. International Journal of Hydrogen Energy, 44(23), 12010–12023. http://doi.org/10.1016/j.ijhydene.2019.03.027

Lakaniemi, A. M., Koskinen, P. E. P., Nevatalo, L. M., Kaksonen, A. H., & Puhakka, J. A. (2011). Biogenic hydrogen and methane production from reed canary grass. Biomass and Bioenergy, 35(2), 773–780. http://doi.org/10.1016/j.biombioe.2010.10.032

Lamb, K. E., Dolan, M. D., & Kennedy, D. F. (2019). Ammonia for hydrogen storage; A review of catalytic ammonia decomposition and hydrogen separation and purification. International Journal of Hydrogen Energy, 44(7), 3580–3593. http://doi.org/10.1016/j.ijhydene.2018.12.024

Li, Y., Zhang, Q., Deng, L., Liu, Z., Jiang, H., & Wang, F. (2018). Biohydrogen production from fermentation of cotton stalk hydrolysate by Klebsiella sp. WL1316 newly isolated from wild carp (Cyprinus carpio L.) of the Tarim River basin. Applied Microbiology and Biotechnology, 102(9), 4231–4242. http://doi.org/10.1007/s00253-018-8882-z

Liu, Y., Heying, E., & Tanumihardjo, S. A. (2012). History, Global Distribution, and Nutritional Importance of Citrus Fruits. Comprehensive Reviews in Food Science and Food Safety, 11(6), 530–545. http://doi.org/10.1111/j.1541-4337.2012.00201.x

Merzari, F., Langone, M., Andreottola, G., & Fiori, L. (2019). Methane production from process water of sewage sludge hydrothermal carbonization. A review. Valorising sludge through hydrothermal carbonization. Critical Reviews in Environmental Science and Technology (Vol. 49). Taylor & Francis. http://doi.org/10.1080/10643389.2018.1561104

Michalopoulos, I., Lytras, G. M., Mathioudakis, D., Lytras, C., Goumenos, A., Zacharopoulos, I., … Lyberatos, G. (2019). Hydrogen and Methane Production from Food Residue Biomass Product (FORBI). Waste and Biomass Valorization, 0(0), 0. http://doi.org/10.1007/s12649-018-00550-4

Muñoz-Páez, K. M., Alvarado-Michi, E. L., Buitrón, G., & Valdez-Vazquez, I. (2018). Distinct effects of furfural, hydroxymethylfurfural and its mixtures on dark fermentation hydrogen production and microbial structure of a mixed culture. International Journal of Hydrogen Energy, 1–9. http://doi.org/10.1016/j.ijhydene.2018.04.139

Noblecourt, A., Christophe, G., Larroche, C., & Fontanille, P. (2018). Hydrogen production by dark fermentation from pre-fermented depackaging food wastes. Bioresource Technology, 247(July 2017), 864–870. http://doi.org/10.1016/j.biortech.2017.09.199

Pagliaccia, P., Gallipoli, A., Gianico, A., Montecchio, D., & Braguglia, C. M. (2016). Single stage anaerobic bioconversion of food waste in mono and co-digestion with olive husks: Impact of thermal pretreatment on hydrogen and methane production. International Journal of Hydrogen Energy, 41(2), 905–915. http://doi.org/10.1016/j.ijhydene.2015.10.061

Parra, D., Valverde, L., Pino, F. J., & Patel, M. K. (2019). A review on the role, cost and value of hydrogen energy systems for deep decarbonisation. Renewable and Sustainable Energy Reviews, 101(July 2018), 279–294. http://doi.org/10.1016/j.rser.2018.11.010

PETÄJÄ, E., MYLLYNIEMI, P., & PETÄJÄ, P. (2008). Use of inoculated lactic acid bacteria in fermenting sour cabbage. Agricultural and Food Science, 9(1), 37–48. http://doi.org/10.23986/afsci.5651

Pradhan, N., d’Ippolito, G., Dipasquale, L., Esposito, G., Panico, A., Lens, P. N. L., & Fontana, A. (2019). Simultaneous synthesis of lactic acid and hydrogen from sugars via capnophilic lactic fermentation by Thermotoga neapolitana cf capnolactica. Biomass and Bioenergy, 125(March), 17–22. http://doi.org/10.1016/j.biombioe.2019.04.007

Rabii, A., Aldin, S., Dahman, Y., & Elbeshbishy, E. (2019). A Review on Anaerobic Co-Digestion with a Focus on the Microbial Populations and the Effect of Multi-Stage Digester Configuration. Energies, 12(6), 1106. http://doi.org/10.3390/en12061106

Sharma, K. (2019). Carbohydrate-to-hydrogen production technologies: A mini-review. Renewable and Sustainable Energy Reviews, 105(May 2018), 138–143. http://doi.org/10.1016/j.rser.2019.01.054

Sołowski, G. (2018). Biohydrogen Production - Sources and Methods : A Review. International Journal of Bioprocessing and Biotechniques, 2018(01), 1–22. http://doi.org/10.20911/IJBBT-101.

Sołowski, G., Hrycak, B., Czylkowski, D., Cenian, A., & Konkol, I. (2018). Hydrogen and methane production under conditions of dark fermentation process with low oxygen concentration. In T. Sabu (Ed.), Proceedings of the International Conference on Reuse and Recycling (ICRM 2018), Kottayam, Kerala, India (1st ed.). Kottayam.

Sołowski, G., Hrycak, B., Czylkowski, D., Cenian, A., & Pastuszak, K. (2018). Oxygen sensitivity of hydrogenesis ’ and methanogenesis ’. In Pikoń Krzysztof (Ed.), Contenporary Problems of Power Engineering and Environmental Protection 2017 (1st ed., pp. 157–159). Gliwice: Department of Technologies and Installations for Waste Management. http://doi.org/http://cleanalternative.eu/wp-content/uploads/2018/01/Merged_OSWE_book.pdf

Sołowski, G., Hrycak, B., Czylkowski, D., Konkol, I., Pastuszak, K., & Cenian, A. (2019). Hydrogen and Methane Production Under Conditions of Dark Fermentation Process with Low Oxygen Concentration. In K. Jibin, N. Kalarikkal, S. Thomas, & A. Nzihou (Eds.), Re-Use and Recycling of Materials Solid Waste Management and Water Treatment (1st ed., pp. 263–272). Gistrup: River Publisher.

Sołowski, G., Hrycak, B., Czylkowski, D., Pastuszak, K., & Cenian, A. (2018). Oxygen sensitivity of hydrogenesis ’ and methanogenesis ’. In K. Pikoń & C. Lucyna (Eds.), Contemporary Problems of Power Engineering and Environmental Protection 2017 (pp. 157–159). Gliwice: Department of Technologies and Installations for Waste Management Copyright. http://doi.org/http://cleanalternative.eu/wp-content/uploads/2018/01/Merged_OSWE_book.pdf

Taheri, E., Amin, M. M., Fatehizadeh, A., Pourzamani, H., Bina, B., & Spanjers, H. (2018). Biohydrogen production under hyper salinity stress by an anaerobic sequencing batch reactor with mixed culture. Journal of Environmental Health Science and Engineering, 16(2), 159–170. http://doi.org/10.1007/s40201-018-0304-8

DOI: https://doi.org/10.22146/agritech.35848

Article Metrics

Abstract views : 2632 | views : 2248


  • There are currently no refbacks.

Copyright (c) 2019 Gaweł Sołowski, Izabela Konkol, Bartosz Hrycak, Dariusz Czylkowski

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

agriTECH has been Indexed by:

agriTECH (print ISSN 0216-0455; online ISSN 2527-3825) is published by Faculty of Agricultural Technology, Universitas Gadjah Mada in colaboration with Indonesian Association of Food Technologies.

website statisticsView My Stats