Pola Perubahan Protein Koro Benguk (Mucuna pruriens) Selama Fermentasi Tempe Menggunakan Inokulum Raprima
Novia Aristi Rahayu(1), Muhammad Nur Cahyanto(2), Retno Indrati(3*)
(1) SCOPUS ID: 6508064903, Fakultas Teknologi Pertanian, Universitas Gadjah Mada, Yogyakarta
(2) Departemen Teknologi Pangan dan Hasil Pertanian, Fakultas Teknologi Pertanian, Universitas Gadjah Mada, Jl. Flora, Bulaksumur, Yogyakarta
(3) Departemen Teknologi Pangan dan Hasil Pertanian, Fakultas Teknologi Pertanian, Universitas Gadjah Mada, Jl. Flora, Bulaksumur, Yogyakarta
(*) Corresponding Author
Abstract
Tempe is a nutritious healthy food because it contains bioactive compounds that are beneficial to human health. This product is good for those who are vegetarian. During the fermentation process, fungi produce proteases that break down the velvet bean’s proteins into protein fragments or peptides which have functional properties. The fungus strain and the duration of incubation time will affect the bioactive peptides formed. This study aimed to determine the effect of tempe inoculum on changes in peptide concentration and protein patterns during fermentation. The results showed that proteolytic activity increased rapidly at the beginning of tempe fermentation and reached its optimum activity in 96 h fermentation period (0.046 U/mL). The pH of tempe changed from 7.01 then decreased to 5.92 in 30 h incubation, after that it increased again to 7.25 at the end of fermentation time (120 h). Peptide concentration increased with increasing fermentation time. The degree of hydrolysis increased rapidly until 24 h of incubation, then began to be stable until 96 h of incubation (reaching the hydrolysis degree of 46.31%). SDS PAGE patterns showed the formation of proteins/peptides with a molecular weight of <25 kDa as a result of hydrolysis of velvet bean protein during tempe fermentation using Raprima inoculum
Keywords
Full Text:
PDF (Bahasa Indonesia)References
Agbede, J.O., dan V.A. Aletor. (2005). Studies of the Chemical Composition and protein Quality Evaluataion of Differently Processed Canavalia ensiformis and Mucuna pruriens Seed Flours. Journal of Food Composition and Analysis. 18, 89-103. DOI: 10.1016/j.jfca.2003.10.011
Baumann, U., dan B. Bisping. (1995). Proteolysis during tempe fermentation. Food Microbiology 12:39-47. DOI: 10.1016/S0740-0020(95)80077-8
Church, F.C., H.E. Swaisgood, D, H, Porter, dan G.L. Catignani. (1983). Spectrophotometric assay using o phthaldialdehyde for determination of proteolysis in milk and isolated milk proteins. J. Dairy Sci. 66, 1219- 1227. DOI: 10.3168/jds.S0022-0302(83)81926-2
de Reu, J.C., R.M. ten Wolde, J. de Groot, M. J. R. Nout, F. M. Rombouts, dan H. Gruppen. (1995). Protein Hydrolysis during Soybean Tempe Fermentation with Rhizopus oligosporus. Journal of Agricultural and Food Chemistry, 43(8), 2235–2239. DOI:10.1021/jf00056a050
Egountly, M. dan O.C. Aworh. (2003). Effect of soaking, dehulling, cooking, and fermentation with Rhizopus oligosporus on the oligosaccharides, Trypsin inhibitor, Phytic acid, and Tannins of Soybean (Glycine max Merr.), Cowpea (Vigna unguiculata L. Walp.) and Groundbean (Macrotyloma geocarpa Harms). Journal of Food Engineering 56, 249-254. DOI: 10.1016/S0260-8774(02)00262-5
Elegado, B. F. dan Y. Fujio. (1993). Growth of Rhizopus strains on soybean and their protease formation. J. Fat. Agr. 37 (34), 315-324. https://catalog.lib.kyushu-u.ac.jp/opac_download_md/24024/p315.pdf
Feng, X. M., A. R. Eriksson, dan J. Schnürer. (2005). Growth of lactic acid bacteria and Rhizopus oligosporus during barley tempeh fermentation. International Journal of Food Microbiology, 104(3), 249-256. DOI: 10.1016/j.ijfoodmicro.2005.03.005
Gibbs, B. F. (1999). Production and Characterization of Bioactive Peptides from Soy Fermented Foods and Their Hydrolysates. Dissertation. Department of Food Science and Agricultural Chemistry, MacDonald Campus, Mcgili University. Canada. DOI: 10.1.1.427.5960
Gibbs, B.F., A. Zougman, R. Masse, dan C. Mulligan. 2004. Production and characterization of bioactive peptides from soy hydrolysate and soy-fermented food. Food Research International 37(2), 123-131. DOI: 10.1016/j.foodres.2003.09.010
Handajani, S. (2001). Indigenous mucuna tempe as functional food. Asia Pacific. J. Clin. Nutr (2001).10(3), 222-225. DOI: 10.1046/j.1440-6047.2001.00243.x
Hidayat, Nur, M.C. Padaga dan S. Suhartini. (2006). Mikrobiologi Industri. Andi. Yogyakarta
Himaya, S. dan R. B. Kim. (2012). An active peptida purified from gastrointestinalenzyme hidrolisate of Pasific cod skin gelatin attenuates angiotensin I converting enzyme activity and cellular oxidative stress. Food Chem 132, 1872-1882. DOI: 10.1016/j.foodchem.2011.12.020
Ikasari, L., dan D.A. Mitchell. (1998). Mimicking gas and temperature changes during enzyme production by Rhizopus oligosporus in solid-state fermentation. Biotechnology letters, Vol. 20, N0. 4. pp. 349-353. DOI: 10.1023/A:1005319128217
Kalidass, C., dan A. K. Mahapatra. (2014). Evaluation of the proximate and phytochemical compositions of an underexploited legume Mucuna pruriens var. utilis (Wall ex Wight) LH Bailey. International Food Research Journal, 21(1), 303-308. http://agris.upm.edu.my:8080/dspace/handle/0/10928
Karmini, M., D. Sutopo, dan Hermana. (1996). Aktivitas enzim hidrolik kapang Rhizopus sp pada proses fermentasi tempe. Penelitian Gizi dan Makanan 19, 93-102. http://ejournal.litbang.depkes.go.id/index.php/pgm/article/view/2302/2392
Kitts, D. dan K. Weiler. (2003). Bioactive Proteins and Peptidas from Food Sources. Applications of Bioprocesses used in Isolation and Recovery. Curr Pharm. Design. 9, 1309-1323. DOI: 10.2174/1381612033454883
Muzdalifah, D., Z. A. Athaillah, W. Nugrahani, dan A. F. Devi. (2017). Colour and pH changes of tempe during extended fermentation. In AIP conference Proceedings. AIP Publishing. Vol. 1803, No. 1, p. 020036. DOI: 10.1063/1.4973163
Rusdah. (2016). Antioxidative Peptides of Tempe from Indonesia. Thesis. Graduate School Bogor Agricultural University. Bogor. http://repository.ipb.ac.id/handle/123456789/81450
Siddhuraju, P., K. Vijayakumara, dan K. Janardhanan. (1996). Chemical composition and protein quality of little knownlegume, velvet bean (Mucuna pruriens (L). DC). J. Agric. Food Chem. 44, 2636-2641. DOI: 10.1021/jf950776x
Singh, B.P., S. Vij, dan S. Hati, (2014). Functional significance of bioactive peptides derived from soybean. Peptides, 54, 171-179. DOI: 10.1016/j.peptides.2014.01.022
Sparringa R.A., M. Kendall, A. Westby, dan J.D. Owens. (2002). Effects of temperature, pH, water activity and CO2 concentration on growth of Rhizopus oligosporus NRRL 2710. Journal of Applied Microbiology. 92 (2), 329-337. DOI: 10.1046/j.1365-2672.2002.01534.x
Spellman, D., E. Mc Evoy, G. O’Cuinn, dan R.J. FitzGerald. (2003). Proteinase and exopeptidase hydrolysis of whey protein: Comparison of the TNBS, OPA, and pH stat methods for quantification of degree of hydrolysis. International Dairy Journal 13, 447-453. DOI: 10.1016/S0958-6946(03)00053-0
Sridhar, K.R, dan S. Seena. (2006). Nutritional and antinutritional significance of four unconventional legumes of the genus Canavalia - a comparative study. Food Chemistry 99, 267-288. DOI: 10.1016/j.foodchem.2005.07.049
Steinkraus, K.H. (1995). Handbook of Indigenous Fermented Foods, 2nd revised and expanded edn. Marcel Dekker. New York.
Starzyńska-Janiszewska, A., B. Stodolak, dan A. Wikiera, (2015). Proteolysis in tempeh-type products obtained with Rhizopus and Aspergillus strains from grass pea (Lathyrus Sativus) seeds. Acta Sci. Pol. Technol. Aliment., 14, 125-132. DOI: 10.17306/J.AFS.2015.2.14
Weng, T. M. dan M. T. Chen. (2011). Effect of two step fermentation by Rhizopus oligosporus and Bacillus substilis on protein of fermented soybean. Food Science Technology. Res. 17 (5), 393-400. DOI: 10.3136/fstr.17.393
DOI: https://doi.org/10.22146/agritech.41736
Article Metrics
Abstract views : 10187 | views : 23636Refbacks
- There are currently no refbacks.
Copyright (c) 2019 Novia Aristi Rahayu, Muhammad Nur Cahyanto, Retno Indrati
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
agriTECH has been Indexed by:
agriTECH (print ISSN 0216-0455; online ISSN 2527-3825) is published by Faculty of Agricultural Technology, Universitas Gadjah Mada in colaboration with Indonesian Association of Food Technologies.