Effect of Nano and Bulk Nickel Oxide on Biomass and Antioxidant Enzymes Production of Fennel
Hilda Besharat(1), Ramazan Ali Khavari-Nejad(2), Homa Mahmoodzadeh(3*), Khadijeh Nejad Shahrokh Abadi(4)
(1) Department of Biology, Science and Research Branch, Islamic Azad University, Tehran
(2) Department of Biology, Science and Research Branch, Islamic Azad University, Tehran
(3) Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad
(4) Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad
(*) Corresponding Author
Abstract
Keywords
Full Text:
PDFReferences
Aghdam, M.T.B., Mohammadi, H., & Ghorbanpour, M. (2016). Effects of Nano particulate anatase titanium dioxide on physiological and biochemical performance of (Linum usitatissimum) (Linaceae) under well-watered and drought stress conditions. Brazilian Journal of Botany, 39(1), pp.139-146. https://doi.org/10.1007/s40415-015-0227-x
Ahmad, M.S.A., & Ashraf, M. (2012). Essential roles and hazardous effects of nickel in plants. In Reviews of environmental contamination and toxicology, (pp. 125-167). Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0668-6_6
Ahmed, A.I., Yadav, D.R., & Lee, Y.S. (2016). Applications of nickel nanoparticles for control of Fusarium wilt on lettuce and tomato. Int J Innov Res Sci Eng Technol, 5,zpp.7378-7385. https://www.semanticscholar.org/paper
Asher, C.J. (1991). Beneficial elements, functional nutrients, and possible new essential elements. Micronutrients in agriculture, 4 pp.703-723. https://doi.org/10.2136/sssabookser4.2ed.c18
Azimi, R., Jankju Borzelabad, M., Feizi, H., & Azimi, A. (2014). Interaction of SiO2 nanoparticles with seed prechilling on germination and early seedling growth of tall wheatgrass (Agropyron elongatum L.). Polish Journal of Chemical Technology, 16(3) pp.25-29. https://doi.org/10.2478/pjct-2014-0045
Barros, L., Carvalho, A.M., & Ferreira, I.C. (2010). The nutritional composition of fennel (Foeniculum vulgare): Shoots, leaves, stems and inflorescences. LWT-Food Science and Technology, 43(5), pp.814-818. https://doi.org/10.1016/j.lwt.2010.01.010
Beaudoin-Eagan, L.D., & Thorpe, T.A. (1985). Tyrosine and phenylalanine ammonia lyase activities during shoot initiation in tobacco callus cultures. Plant Physiology, 78(3), pp.438-441. https://doi.org/10.1104/pp.78.3.438
Chutipaijit, S. (2015). Establishment of condition and nano particle factors influencing plant regeneration from aromatic rice (Oryza sativa). International Journal of Agriculture & Biology, 17 pp.1049-1054. https://web.b.ebscohost.com
Cramer, G.R., Urano, K., Delrot, S., Pezzotti, M., & Shinozaki, K. (2011). Effects of abiotic stress on plants: a systems biology perspective. BMC plant biology, 11(1), pp.163. https://doi.org/10.1186/1471-2229-11-163
Curien, G., Ravanel, S., Robert, M., & Dumas, R. (2005). Identification of Six Novel Allosteric Effectors of Arabidopsis thaliana Aspartate Kinase-Homoserine Dehydrogenase Isoforms Physiological Context Sets the Specificity. Journal of Biological Chemistry, 280(50), pp.41178-41183. https://www.jbc.org/content/280/50/41178.short
D’Souza, M.R., & Devaraj, V.R. (2013). Oxidative stress biomarkers and metabolic changes associated with cadmium stress in hyacinth bean (Lablab Purpureus). African Journal of Biotechnology, 12(29). DOI: 10.5897/AJB2013.12385
Diao, W.R., Hu, Q.P., Zhang, H., & Xu, J.G. (2014). Chemical composition, antibacterial activity and mechanism of action of essential oil from seeds of fennel (Foeniculum vulgare Mill.). Food Control, 35(1), pp.109-116. https://doi.org/10.1016/j.foodcont.2013.06.056
Fageria, N.K., Filho, M.B., Moreira, A., & Guimarães, C.M. (2009). Foliar fertilization of crop plants. Journal of plant nutrition, 32(6), pp.1044-1064. https://doi.org/10.1080/01904160902872826
Faisal, M., Saquib, Q., Alatar, A.A., Al-Khedhairy, A.A., Hegazy, A.K., & Musarrat, J. (2013). Phytotoxic hazards of NiO-nanoparticles in tomato: a study on mechanism of cell death. Journal of hazardous materials, 250, pp.318-332. https://doi.org/10.1016/j.jhazmat.2013.01.063
Feizi, H., Kamali, M., Jafari, L., & Moghaddam, P.R. (2013). Phytotoxicity and stimulatory impacts of nanosized and bulk titanium dioxide on fennel (Foeniculum vulgare Mill). Chemosphere, 91(4), pp.506-511. https://doi.org/10.1016/j.chemosphere.2012.12.012
Frazier, T.P., Burklew, C.E., & Zhang, B. (2014). Titanium dioxide nanoparticles affect the growth and microRNA expression of tobacco (Nicotiana tabacum). Functional & integrative genomics, 14(1), pp.75-83. https://doi.org/10.1007/s10142-013-0341-4
Gill, S.S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant physiology and biochemistry, 48(12), pp.909-930. https://doi.org/10.1016/j.plaphy.2010.08.016
Gupta, U.C., Kening, W.U., & Liang, S. (2008). Micronutrients in soils, crops, and livestock. Earth Science Frontiers, 15(5), pp.110-125. https://doi.org/10.1016/S1872-5791(09)60003-8
Hernandez-Viezcas, J.A., Castillo-Michel, H., Servin, A.D., Peralta-Videa, J.R., & Gardea-Torresdey, J.L. (2011). Spectroscopic verification of zinc absorption and distribution in the desert plant Prosopis juliflora-velutina (velvet mesquite) treated with ZnO nanoparticles. Chemical engineering journal, 170(2-3), pp.346-352. https://doi.org/10.1016/j.cej.2010.12.021
Huang, J., Sun, S., Xu, D., Lan, H., Sun, H., Wang, Z., Bao, Y., Wang, J., Tang, H., & Zhang, H. (2012). A TFIIIA-type zinc finger protein confers multiple abiotic stress tolerances in transgenic rice (Oryza sativa L.). Plant molecular biology, 80(3), pp.337-350. https://doi.org/10.1007/s11103-012-9955-5
Khodakovskaya, M.V., De Silva, K., Biris, A.S., Dervishi, E., & Villagarcia, H. (2012). Carbon nanotubes induce growth enhancement of tobacco cells. ACS nano, 6(3), pp.2128-2135. https://doi.org/10.1021/nn204643g
Kim, J.J., & Kim, W.Y. (2013). Purification and characterization of polyphenol oxidase from fresh ginseng. Journal of ginseng research, 37(1), p.117-123. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3659630/pdf/grosbr-37-117.pdf
Kim, M.K., Lee, J.S., Kim, K.Y., & Lee, H.G. (2013). Ascorbyl palmitate-loaded chitosan nanoparticles: characteristic and polyphenol oxidase inhibitory activity. Colloids and Surfaces B: Biointerfaces, 103, pp.391-394. https://doi.org/10.1016/j.colsurfb.2012.09.038
Kozlov, M.V. (2005). Pollution resistance of mountain birch, (Betula pubescens) subsp. czerepanovii, near the copper–nickel smelter: natural selection or phenotypic acclimation?. Chemosphere, 59(2), pp.189-197. https://doi.org/10.1016/j.chemosphere.2004.11.010
Krishnaraj, C., Jagan, E.G., Ramachandran, R., Abirami, S.M., Mohan, N., & Kalaichelvan, P.T. (2012). Effect of biologically synthesized silver nanoparticles on (Bacopa monnieri) (Linn.) Wettst. plant growth metabolism. Process biochemistry, 47(4), pp.651-658. https://doi.org/10.1016/j.procbio.2012.01.006
Kumar, V., Kumari, A., Guleria, P., & Yadav, S.K. (2012). Evaluating the toxicity of selected types of nano-chemicals. In Reviews of environmental contamination and toxicology (pp. 39-121). Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1463-6_2
Lee, W.M., Kwak, J.I., & An, Y.J. (2012). Effect of silver nanoparticles in crop plants Phaseolus radiatus and Sorghum bicolor: media effect on phytotoxicity. Chemosphere, 86(5), pp.491-499. https://doi.org/10.1016/j.chemosphere.2011.10.013
Ma, Y., Kuang, L., He, X., Bai, W., Ding, Y., Zhang, Z., Zhao, Y., & Chai, Z. (2010). Effects of rare earth oxide nanoparticles on root elongation of plants. Chemosphere, 78(3), pp.273-279. https://doi.org/10.1016/j.chemosphere.2009.10.050
MacAdam, J.W., Nelson, C.J., & Sharp, R.E. (1992). Peroxidase activity in the leaf elongation zone of tall fescue: I. Spatial distribution of ionically bound peroxidase activity in genotypes differing in length of the elongation zone. Plant Physiology, 99(3), pp.872-878. https://doi.org/10.1104/pp.99.3.872
Mizobutsi, G.P., Finger, F.L., Ribeiro, R.A., Puschmann, R., Neves, L.L.D.M., & Mota, W.F.D. (2010). Effect of pH and temperature on peroxidase and polyphenol oxidase activities of litchi pericarp. Scientia Agricola, 67(2), pp.213-217. https://doi.org/10.1590/S0103-90162010000200013
Moser, B.R., Zheljazkov, V.D., Bakota, E.L., Evangelista, R.L., Gawde, A., Cantrell, C.L., Winkler-Moser, J.K., Hristov, A.N., Astatkie, T., & Jeliazkova, E. (2014). Method for obtaining three products with different properties from fennel (Foeniculum vulgare) seed. Industrial crops and products, 60, pp.335-342. https://doi.org/10.1016/j.indcrop.2014.06.017
Nair, P.M.G., & Chung, I.M. (2014). A mechanistic study on the toxic effect of copper oxide nanoparticles in soybean (Glycine max L.) root development and lignification of root cells. Biological trace element research, 162(1-3), pp.342-352. https://doi.org/10.1007/s12011-014-0106-5
Nair, R., Varghese, S.H., Nair, B.G., Maekawa, T., Yoshida, Y., & Kumar, D.S. (2010). Nano particulate material delivery to plants. Plant science, 179(3), pp.154-163. https://doi.org/10.1016/j.plantsci.2010.04.012
Nguyen, T., Aparicio, M., & Saleh, M. (2015). Accurate mass GC/LC-quadrupole time of flight mass spectrometry analysis of fatty acids and triacylglycerols of spicy fruits from the Apiaceae family. Molecules, 20(12), pp.21421-21432. https://doi.org/10.3390/molecules201219779
Pollard, A.J., Powell, K.D., Harper, F.A., & Smith, J.A.C. (2002). The genetic basis of metal hyper accumulation in plants. Critical reviews in plant sciences, 21(6), pp.539-566. https://doi.org/10.1080/0735-260291044359
Poonam, T., Tanushree, B., & Sukalyan, C. (2013). Water quality indices-important tools for water quality assessment: a review. International Journal of Advances in chemistry, 1(1), pp.15-28. https://s3.amazonaws.com/academia.edu.documents
Raymond, J., Rakariyatham, N., & Azanza, J.L. (1993). Purification and some properties of polyphenoloxidase from sunflower seeds. Phytochemistry, 34(4), pp. 927-931. https://doi.org/10.1016/S0031-9422(00)90689-7
Rather, M.A., Dar, B.A., Sofi, S.N., Bhat, B.A., & Qurishi, M.A. (2016). (Foeniculum vulgare): A comprehensive review of its traditional use, phytochemistry, pharmacology, and safety. Arabian Journal of Chemistry, 9, pp. S1574-S1583. https://doi.org/10.1016/j.arabjc.2012.04.011
Rico, C.M., Majumdar, S., Duarte-Gardea, M., Peralta-Videa, J.R., & Gardea-Torresdey, J.L. (2011). Interaction of nanoparticles with edible plants and their possible implications in the food chain. Journal of agricultural and food chemistry, 59(8), pp.3485-3498. https://doi.org/10.1021/jf104517j
Rico, C.M., Peralta-Videa, J.R., & Gardea-Torresdey, J.L. (2015). Differential effects of cerium oxide nanoparticles on rice, wheat, and barley roots: A Fourier Transform Infrared (FT-IR) micro spectroscopy study. Applied spectroscopy, 69(2), pp.287-295. https://doi.org/10.1366/14-07495
Saeidian, S., & Ghasemifar, E. (2013). Effect of temperature on guaiacol Peroxidase of (Pyrus communis). International Letters of Natural Sciences, (5), 46-51. https://doi.org/10.18052/www.scipress.com/ILNS.5.46
Saison, C., Perreault, F., Daigle, J.C., Fortin, C., Claverie, J., Morin, M., & Popovic, R. (2010). Effect of core–shell copper oxide nanoparticles on cell culture morphology and photosynthesis (photosystem II energy distribution) in the green alga, (Chlamydomonas reinhardtii). Aquatic toxicology, 96(2), pp.109-114. https://doi.org/10.1016/j.aquatox.2009.10.002
Seregin, I., & Kozhevnikova, A.D. (2006). Physiological role of nickel and its toxic effects on higher plants. Russian Journal of Plant Physiology, 53(2), pp.257-277. https://doi.org/10.1134/S1021443706020178
Siddiqui, M.H., Al-Whaibi, M.H., Firoz, M., & Al-Khaishany, M.Y. (2015). Role of nanoparticles in plants. In Nanotechnology and Plant Sciences (pp. 19-35). Springer, Cham. https://doi.org/10.1007/978-3-319-14502-0_2
Smirnova, G.V., Vysochina, G.I., Muzyka, N.G., Samoylova, Z.Y., Kukushkina, T.A., & Oktyabrsky, O.N. (2010). Evaluation of antioxidant properties of medical plants using microbial test systems. World Journal of Microbiology and Biotechnology, 26(12), pp.2269-2276. https://doi.org/10.1007/s11274-010-0417-4
Soares, C., Branco-Neves, S., de Sousa, A., Pereira, R., & Fidalgo, F. (2016). Eco toxicological relevance of nano-NiO and acetaminophen to (Hordeum vulgare L.): combining standardized procedures and physiological endpoints. Chemosphere, 165, pp.442-452. https://doi.org/10.1016/j.chemosphere.2016.09.053
Sunkar, R. (2010). October. MicroRNAs with macro-effects on plant stress responses. In Seminars in cell & developmental biology (Vol. 21, No. 8, pp. 805-811). Academic Press. https://doi.org/10.1016/j.semcdb.2010.04.001
Suriyaprabha, R., Karunakaran, G., Kavitha, K., Yuvakkumar, R., Rajendran, V., & Kannan, N. (2013). Application of silica nanoparticles in maize to enhance fungal resistance. IET nanobiotechnology, 8(3), pp.133-137. https://doi.org/10.1049/iet-nbt.2013.0004
Syu, Y.Y., Hung, J.H., Chen, J.C., & Chuang, H.W. (2014). Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression. Plant physiology and biochemistry, 83, pp.57-64. https://doi.org/10.1016/j.plaphy.2014.07.010
Taiz, L., Zeiger, E., Møller, I.M., & Murphy, A. (2015). Plant physiology and development. https://www.forskningsdatabasen.dk/en/catalog/2524903221
Tarrahi, R., Khataee, A., Movafeghi, A., Rezanejad, F., & Gohari, G. (2017). Toxicological implications of selenium nanoparticles with different coatings along with Se4+ on (Lemna minor). Chemosphere, 181, pp.655-665. https://doi.org/10.1016/j.chemosphere.2017.04.142
Tiwari, P.K., Singh, A.K., Singh, V.P., Prasad, S.M., Ramawat, N., Tripathi, D.K., Chauhan, D.K., & Rai, A.K. (2019). Liquid assisted pulsed laser ablation synthesized copper oxide nanoparticles (CuO-NPs) and their differential impact on rice seedlings. Ecotoxicology and Environmental Safety, 176, pp.321-329. https://doi.org/10.1016/j.ecoenv.2019.01.120
Torbati, S. (2018). Phytotoxicological Effects of Bulk-NiO and NiO Nanoparticles on Lesser and Giant Duckweeds as Model Macrophytes: Changes in the Plants Physiological Responses. Iranian Journal of Toxicology, 12(4), pp.31-39. http://ijt.arakmu.ac.ir/article-1-690-en.pdf
Tripathi, D.K., Singh, S., Singh, S., Pandey, R., Singh, V.P., Sharma, N.C., Prasad, S.M., Dubey, N.K., & Chauhan, D.K. (2017). An overview on manufactured nanoparticles in plants: uptake, translocation, accumulation and phytotoxicity. Plant Physiology and Biochemistry, 110, pp.2-12. https://doi.org/10.1016/j.plaphy.2016.07.030
Tripathi, D.K., Singh, S., Singh, V.P., Prasad, S.M., Chauhan, D.K., & Dubey, N.K. (2016). Silicon nanoparticles more efficiently alleviate arsenate toxicity than silicon in maize cultivar and hybrid differing in arsenate tolerance. Frontiers in Environmental Science, 4, p.46. https://doi.org/10.3389/fenvs.2016.00046
Velikova, M., Bankova, V., Sorkun, K., Houcine, S., Tsvetkova, I., & Kujumgiev, A. (2000). Propolis from the Mediterranean region: chemical composition and antimicrobial activity. Zeitschrift für Naturforschung C, 55(9-10), pp.790-793. https://doi.org/10.1515/znc-2000-9-1019
Wang, X., Han, H., Liu, X., Gu, X., Chen, K., & Lu, D. (2012). Multi-walled carbon nanotubes can enhance root elongation of wheat (Triticum aestivum) plants. Journal of Nanoparticle Research, 14(6), p.841. https://doi.org/10.1007/s11051-012-0841-5
Watanabe, S., Kojima, K., Ide, Y., & Sasaki, S. (2000). Effects of saline and osmotic stress on proline and sugar accumulation in (Populus euphratica) in vitro. Plant Cell, Tissue and Organ Culture, 63(3), p.199. https://doi.org/10.1023/A:1010619503680
Wei, L., Thakkar, M., Chen, Y., Ntim, S.A., Mitra, S., & Zhang, X. (2010). Cytotoxicity effects of water dispersible oxidized multiwalled carbon nanotubes on marine alga, Dunaliella tertiolecta. Aquatic Toxicology, 100(2), pp.194-201. https://doi.org/10.1016/j.aquatox.2010.07.001
Yang, L., & Watts, D.J. (2005). Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicology Letters, 158(2) pp.122-132. https://doi.org/10.1016/j.toxlet.2005.03.003
Yruela, I. (2005). Copper in plants. Brazilian Journal of Plant Physiology, 17(1), pp.145-156. https://doi.org/10.1590/S1677-04202005000100012
Zafar, H., Ali, A., Ali, J.S., Haq, I.U., & Zia, M. (2016). Effect of ZnO nanoparticles on Brassica nigra seedlings and stem explants: growth dynamics and antioxidative response. Frontiers in plant science, 7, p.535. https://doi.org/10.3389/fpls.2016.00535
Zhang, P., Cui, H.X., Zhang, Z.J., & Zhong, R.G. (2008). Effects of nano-TiO2 photo semiconductor on photosynthesis of cucumber plants. Chinese Agricultural Science Bulletin, 24 pp.230-233. http://en.cnki.com.cn/Article_en/CJFDTotal-ZNTB200808051.htm
DOI: https://doi.org/10.22146/agritech.55643
Article Metrics
Abstract views : 1900 | views : 1638Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Hilda Besharat, Ramazan Ali Khavari-Nejad, Homa Mahmoodzadeh, Khadijeh Nejad Shahrokh Abadi
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
agriTECH has been Indexed by:
agriTECH (print ISSN 0216-0455; online ISSN 2527-3825) is published by Faculty of Agricultural Technology, Universitas Gadjah Mada in colaboration with Indonesian Association of Food Technologies.