Produksi Selobiosa dari Hidrolisis Kulit Umbi Singkong dan Uji Aktivitas Prebiotiknya pada Lactobacillus plantarum

https://doi.org/10.22146/agritech.58013

Ilham Marvie(1), Aziz Boing Sitanggang(2*), Slamet Budijanto(3)

(1) Program Studi Teknologi Pangan, Jurusan Teknologi Produksi dan Industri, Institut Teknologi Sumatera, Jl. Terusan Ryacudu Way Huwi, Lampung Selatan 35365 & Departemen Ilmu dan Teknlogi Pangan, Fakultas Teknologi Pertanian, Institut Pertanian Bogor, Kampus IPB Dramaga, Bogor 16002
(2) Departemen Ilmu dan Teknlogi Pangan, Fakultas Teknologi Pertanian, Institut Pertanian Bogor, Kampus IPB Dramaga, Bogor 16002
(3) Departemen Ilmu dan Teknlogi Pangan, Fakultas Teknologi Pertanian, Institut Pertanian Bogor, Kampus IPB Dramaga, Bogor 16002
(*) Corresponding Author

Abstract


Kulit umbi singkong merupakan salah satu limbah dari industri pengolahan singkong. Eksplorasi dari pemanfaatan selulosa kulit umbi singkong dilakukan untuk mendapatkan peningkatan nilai tambah dan menjawab kebutuhan industri, salah satunya adalah selobiosa sebagai alternatif sumber prebiotik. Selobiosa didapatkan melalui hidrolisis selulosa dengan enzim selulase. Penelitian ini bertujuan memproduksi selobiosa dengan menggunakan kombinasi konsentrasi enzim selulase dan waktu hidrolisis yang tepat, serta menguji aktivitas prebiotik selobiosa yang dihasilkan menggunakan Lactobacillus plantarum. Penelitian ini menggunakan kulit umbi singkong varietas Gajah (GJ-0) dari Sukabumi, Jawa Barat. Metode yang dilakukan pada penelitian ini meliputi karakterisasi bahan baku, ekstraksi selulosa dari kulit singkong, hidrolisis selulosa menjadi selobiosa, pengukuran total gula dan gula pereduksi produk hidrolisis, kinetika reaksi hidrolisis, uji kemampuan tumbuh probiotik dan penentuan skor aktivitas prebiotik. Proses hidrolisis menggunakan enzim selulase berkonsentrasi 1,15 U/mL dan 2,88 U/mL, pH 4,8, suhu 37 °C, kecepatan agitasi 150 rpm, dan diamati selama 24 jam waktu hidrolisis. Hasil menunjukkan bahwa selama 12 jam waktu hidrolisis dapat menghasilkan selobiosa dengan derajat polimerisasi 2,05 pada selulase berkonsentrasi 1,15 U/mL dan 1,94 pada selulase berkonsentrasi 2,88 U/mL. Hidrolisis selama 12 jam dengan konsentrasi enzim 1,15 U/mL meningkatkan kandungan total gula sebesar 516,30±16,57 mg/L dan gula pereduksi sebesar 250,03±9,43 mg/L. Peningkatan penggunaan konsentrasi selulase menjadi 2,88 U/ mL menghasikan kandungan total gula menjadi 592,41±17,81 mg/L dan kandungan gula pereduksi menjadi 304,67±10,70 mg/L. Reaksi hidrolisis selulase mengikuti kinetika reaksi ordo 0 dengan nilai k yang tidak jauh berbeda diantara kedua konsentrasi enzim yang digunakan. Penggunaan konsentrasi enzim sebesar 1,15 U/mL selama 12 jam waktu hidrolisis adalah kombinasi terbaik. Potensi prebiotik dari selobiosa terlihat dengan adanya pertumbuhan Lactobacillus plantarum pada MRS dimana glukosa disubstitusi dengan selobiosa. Produk hidrolisis dengan selulase berkonsentrasi 2,88 U/ml memiliki skor aktivitas prebiotik 0,74 dan lebih tinggi dibandingkan produk hidrolisis dengan konsentrasi selulase 1,15 U/mL, yakni dengan skor 0,60.


Keywords


Kulit umbi singkong; selobiosa; selulase; selulosa; prebiotik

Full Text:

PDF


References

Allen, S. A., Godson, A. R. E. E., Ayodeji, S. M., & Deborah, S. E. (2016). Lignocelluloses: An economical and ecological resource for bio-ethanol production – a review. International Journal of Natural Resource Ecology and Management, 1(3), 128–144. https://doi.org/10.11648/j.ijnrem.20160103.18

Anonim. (2013). Pengeluaran dan Konsumsi Penduduk Indonesia. Survey Sosial Ekonomi Nasional. Badan Pusat Statistik. Jakarta.

Aripin, M., Kassim, A., Daud, Z., & Hatta, M. (2013). Cassava peels for alternative fibre in pulp and paper industry: chemical properties and morphology characterization. International Journal of Integrated Engineering, 5(1), 30–33.

Barati, Z., Latif, S., & Müller, J. (2019). Enzymatic hydrolysis of cassava peels as potential pre-treatment for peeling of cassava tubers. Biocatalysis and Agricultural Biotechnology, 20:101247, 1-8. https://doi.org/10.1016/j.bcab.2019.101247

Basholli-salihu, M., Mueller, M., Unger, F. M., & Viernstein, H. (2013). The Use of cellobiose and fructooligosaccharide on growth and stability of Bifidobacterium infantis in fermented milk. Food and Nutrition Sciences, 4, 1301–1306.

Bayitse, R., Hou, X., Bjerre, A. B., & Saalia, F. K. (2015). Optimisation of enzymatic hydrolysis of cassava peel to produce fermentable sugars. AMB Express, 5(60), 1-7. https://doi.org/10.1186/s13568-015-0146-z

Chen, H. (2014). International Journal of Natural Resource Ecology and Management. Bejing: Chemical Industry Press. https://doi.org/10.1007/978-94-007-6898-7

De Man, J., Ragosa, M., & Sharpe, M. E. (1960). A medium for cultivation of Lactobacilli. Journal of Applied Bacteriology, 1, 130–135.

Dubois, M., Gilles, K., Hamilton, J., Rebers, P., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350–356. https://doi.org/10.1021/ac60111a017

Elechi, O. O., Tagbo, N. J., Mary, O. C., & Emmanuel, A. O. (2016). Acid hydrolysis of cassava peel. International Journal of Scientific & Technology Research, 5(01), 184–187.

Herawati, E. R. N., Miftakhussolikhah, M., Nurhayati, R., Sari, K. W., & Pranoto, Y. (2019). Oligosaccharides profile and prebiotic potential of gembolo tuber (Dioscorea bulbifera ). In IOP Conf. Series: Earth and Enviromental Science. IOP Publishing. https://doi.org/10.1088/1755-1315/251/1/012048. 30 April 2020.

Huebner, J., Wehling, R. L., & Hutkins, R. W. (2007). Functional activity of commercial prebiotics. International Dairy Journal, 17(7), 770–775. https://doi.org/10.1016/j.idairyj.2006.10.006

Idugboe., Nwokoro, O, D., & Imasuen, S. (2017). Chemical composition of cassava peels collected from four locations (Koko, Warri, Okada, and Benin City), BREWERS SPENT YEAST AND THREE GRADEs of “Caspeyeast”. International Journal of Science and Research, 6(4), 2015–2018. https://doi.org/10.21275/ART20172389

Jayus, J., Nafi, A., & Shabrina, H. A. (2019). Degradasi komponen selulosa, hemiselulosa, dan pati tepung kulit ubi kayu menjadi gula reduksi oleh Aspergillus niger, Trichoderma viride, dan Acremonium sp. IMI 383068. Jurnal Agroteknologi, 13(01), 34–41.

Karnaouri, A., Matsakas, L., Krikigianni, E., Rova, U., & Christakopoulos, P. (2019). Valorization of waste forest biomass toward the production of cello-oligosaccharides with potential prebiotic activity by utilizing customized enzyme cocktails. Biotechnology for Biofuels, 12(1), 1–19. https://doi.org/10.1186/s13068-019-1628-z

Kayati, F. N., Syamsiah, S., & Sediawan, W. B. (2016). Studi kinetika hidrolisis tandan kosong kelapa sawit (TKKS) dengan proses fermentasi padat menggunakan Jamur Aspergillus niger. Reaktor, 16(1), 1–8.

Liang, X., Yoshida, T., & Uryu, T. (2013). Direct saccharification and ethanol fermentation of cello-oligosaccharides with recombinant yeast. Carbohydrate Polymers, 91(1), 157–161. https://doi.org/10.1016/j.carbpol.2012.07.056

Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426–428. https://doi.org/10.1021/ac60147a030

Mohd-asharuddin, S., Othman, N., Shaylinda, N., & Zin, M. (2017). A chemical and morphological study of cassava peel : a potential waste as coagulant aid. In MATEC Web of Conferences, 06012, 1–8. EDP Sciences. https://doi.org/10.1051/matecconf/201710306012

Moongngarm, A., Trachoo, N., & Sirigungwan, N. (2011). Low molecular weight carbohydrates, prebiotic content, and prebiotic activity of selected food plants in Thailand. Advance Journal of Food Science and Technology, 3(4), 269–274.

Murtiningrum, Suryadarma, P., Suryani, A., & Mangunwidjaja, D. (2019). Identification of inulin profile from red fruit (Pandanus conoideus L) pedicel extract using LC-MS and its in vitro prebiotic activity test. International Journal of Advance Reasearch, 7(11), 344–351. https://doi.org/10.21474/IJAR01/10014

Oluwanike, A., & Adeneye, M. A. (2014). Evaluation of chemical composition and nutritive potential of oil palm slurry fermented with cassava peel as feed for livestock. African Journal of Agricultural Research, 9(26), 2062–2067. https://doi.org/10.5897/AJAR2013.7565

Selig, M., Weiss, N., & Ji, Y. (2008). Enzymatic Saccharification of Lignocellulosic Biomass Laboratory Analytical Procedure. Colorado (US): Midwest Research Institute.

Sugiyono. (2013). Metode Penelitian Pendidikan Pendekatan Kuantitatif, Kualitatif dan R7D. Bandung (ID): Alfabeta.

Tasaso, P. (2015).Optimization of reaction condition for synthesis of carboxymethyl cellulose from oil palm fronds. International Journal of Chemical Engineering and Applications, 6(2), 3–6. https://doi.org/10.7763/IJCEA.2015.V6.460

van Soest, P. J. (1963). Use of detergents in the analysis of fibrous feeds. II. A rapid method for the determination of fiber and lignin. Journal of AOAC, 46, 829–835.

van Zanten, G. C., Knudsen, A., Roytio, H., Forssten, S., Lawther, M., Blennow, A., Lahtinen, S. J., Jakobsen, M., Svensson, B., & Jespersen, L. (2012). The effect of selected synbiotics on microbial composition and short-chain fatty acid production in a model system of the human colon. PloS ONE, 7(10), 1-10. https://doi.org/10.1371/journal.pone.0047212. 8 Juni 2020.

Van Zanten, G., Krych, L., Roytio, H., Forssten, S., Lahtinen, S. J., Abu, W., Sørensen, S., Svensson, B., Jespersen, L., Jokobsen, M. (2014). Synbiotic Lactobacillus acidophilus NCFM and cellobiose does nt affect humat gut bacterial diversity but increases abudance of lactobacili, bifidobacteria and branched-chain fatty acids: a randomizes, double-blinded cross-over trial. FEMS Microbiology Ecology 90(1), 225-236. https://doi.org/10.1111/1574-6941.12397

Widiarto, S., Pramono, E., Rochliadi, A., & Arcana, I. M. (2019). Cellulose nanofibers preparation from cassava peelsvia mechanical disruption. Fibers, 7(44), 1–11. https://doi.org/10.3390/fib7050044

Worthington. (2020). Enzyme Manual Cellulase. Retrieved from http://www.worthington-biochem.com/CEL/default.html. 6 Juli 2020.



DOI: https://doi.org/10.22146/agritech.58013

Article Metrics

Abstract views : 4394 | views : 3908

Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 Ilham Marvie, Azis Boing Sitanggang, Slamet Budijanto

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

agriTECH has been Indexed by:


agriTECH (print ISSN 0216-0455; online ISSN 2527-3825) is published by Faculty of Agricultural Technology, Universitas Gadjah Mada in colaboration with Indonesian Association of Food Technologies.


website statisticsView My Stats