Optimization of Silkworm Sericin Extraction Attacus atlas and Samia cynthia ricini Using Response Surface Methodology

https://doi.org/10.22146/agritech.71950

Yuni Cahya Endrawati(1*), Dedy Duryadi Solihin(2), Ani Suryani Suryani(3), Noviyan Darmawan Darmawan(4), Irma Herawati Suparto(5), Bella Fitri Rahmantika(6)

(1) Department of Animal Production and Technology, Faculty of Animal Science, IPB University, Jl. Agatis Kampus IPB Dramaga Bogor, West Java 16680
(2) Department of Biology, Faculty of Math and Natural Science, IPB University, Gedung Biologi Kampus IPB Dramaga Bogor, West Java 16680
(3) Department of Agricultural Industry Technology, Faculty of Agricultural Technology, IPB University. Jl. Lingkar Akademik Kampus IPB Dramaga Bogor, West Java 16680
(4) Department of Chemistry, Faculty of Math and Natural Science, IPB University, Jl. Tanjung Kampus IPB Dramaga Bogor, West Java 16680
(5) Department of Chemistry, Faculty of Math and Natural Science, IPB University, Jl. Tanjung Kampus IPB Dramaga Bogor, West Java 16680
(6) Department of Animal Production and Technology, Faculty of Animal Science, IPB University, Jl. Agatis Kampus IPB Dramaga Bogor, West Java 16680
(*) Corresponding Author

Abstract


Silk fiber is an organic waste that can pollute the environment due to its solubility in processing wastewater. The extraction from wastewater was carried out to reduce environmental pollution and produce natural bioactive. Therefore, this research aims to produce an extraction method that maximizes the protein yield of Attacus atlas (A. atlas) and Samia cynthia ricini (S. ricini) sericin and analyze the characteristics. The method consists of two stages, the optimization of sericin protein extraction with Response Surface Methodology (RSM) and its characterization. The optimization resulted in the optimum extraction of A. atlas and S. ricini sericin at a concentration of 0.08 and 0.03 N NaOH, temperature of 130.52 °C and 113.20 °C, time of 71.71 and 33.78 minutes with a yield of 17.39±1.24% and 20.24±2.30%. The sericin protein had a molecular weight of 8.99 and 7.08 kDa in A. atlas and S. ricini. The extraction produces glycine, alanine, and tyrosin for A. atlas and glutamic acid, glycine, and alanine for S. ricini. Therefore, the sericin extraction formulation did not change the secondary structure protein, as evidenced by the FTIR results.


Keywords


Attacus atlas; optimization; RSM; Samia cynthia ricini; sericin protein

Full Text:

PDF


References

Ahn, J., Choi, H., Lee, K., Nahm, J. & Cho, C. (2001). Novel mucoadhesive polymer prepared by template polymerization of acrylic acid in the presence of silk sericin. Journal of Applied Polymer Science 80: 274–280.

Aini, N.H. (2009). Pengaruh beberapa konsentrasi media dan lamanya perebusan kokon Attacus atlas L. terhadap kualitas filamen yang dihasilkan [skripsi]. Departemen Biologi Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Pertanian Bogor. Bogor.

Aramwit, P. & Sangcakul, A. (2007). The effect of sericin cream on wound healing in rats. Bioscience, Biotechnology, and Biochemistry 71(10): 2473-2477.

Aramwit, P., Kanokpanont, S. & De-Eknamkul, W. (2009). The effect of sericin with variable amino-acid content from different silk strains on collagen and nitric oxide production. Journal of Biomaterials Science, Polymer Edition 20(9): 1295–1306.

Aramwit, P., Kanokpanont, S., Punyarit, P. & Srichana, T. (2010). The effect of sericin from various extraction methods on cell viability and collagen production. International Journal of Molecular Sciences 11: 2200-2211.

Atmosoedarjo, S., Kartasubrata, J., Kaomini, M., Saleh, W. & Moerdoko, W. (2000). Sutera Alam Indonesia. Yayasan Sarana Wana Jaya, Jakarta.

Chang-Kee, H., Yuk-Hyun, J., Sung-Hee, L., Geum-Ju, P. & Deock-Hyoung, C. (2002). Anticancer agents containing antigenotoxic and immunostimulative peptides produced from the hydrolysate of silkworm cocoon. Patent No. WO02076487.

Cui, X., Urita, S., Imanishi, S., Nagasawa, S. & Suzuki, K. (2009). Isolation and characterization of 41 kDa sericin from the wild silkmoth Antheraea yamamai. Journal of Insect Biotechnology and Sericology 78: 11-16.

Dash, R., Ghosh, S.K., Kaplan, D.L. & Kundu, SC (2007). Purification and biochemical characterization of a 70 kDa sericin from tropical tasar silkworm, Antheraea mylitta. Comparative Biochem and Physiology 147: 129-134.

Ersel, M., Uyanikgil, Y., Akarca, F.K., Ozcete, E., Altunci, Y.A., Karabey, F., Cavusoglu, T., Meral, A., Yigitturk, G. & Ceti, E.O. (2016). Effects of silk sericin on incision wound healing in a dorsal skin flap wound healing rat model. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research 22: 1064-1078.

Estetika, Y. & Endrawati, Y.C. (2018). Silkworm productivities of Bombyx mori L. BS-09 race in tropic. Journal of Animal Production and Processing Technology 6(3): 104-112.

Gulrajani, M.L., Purwar, R. & Joshi M. (2008). A value-added finish from silk degumming waste liquor. Department of Textile Technology, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi.

Hoa, M., Wanga, H. & Laua, K. (2012). Effect of degumming time on silksilk worm silk fibre for biodegradable polymer composites. Applied Surface Science 258:(1): 3948-3955.

Krishna, RKSV, Vijaya, KNB, Subha, MCS, Sairam, M. dan Aminabavi, T.M. (2006). Novel chitosan-based pH-sensitive interpenetrating network microgels for the controlled release of cefadroxil. Carbohydrate Polymers 66: 333–344.

Kumar, J.P. & Mandal, B.B. (2017). Antioxidant potential of mulberry and non-mulberry silk sericin and its implications in biomedicine. Free Radical Biology and Medicine 108:803–818.

Kweon, H., Jo, Y.Y., Lee, H.S., Lee, K.G., Sung, G.B., Kim, K.Y. & Ji, S.D. (2012). Determination of Heavy Metals and Residual Agricultural Chemicals in Bombyx mori Silkworm Cocoon. Journal of Sericultural and Entomological Sciences 50(2): 48-52.

Laemmli, U.K. (1970). Cleavage of structural protein during the assembly of the head of bacteriophage T4. Nature 227: 680-685.

Lehninger, A.L. (1982). Dasar-dasar biokimia jilid 2. Erlangga, Jakarta.

Lenth, R.V. (2020). Response surface methods in R, using rsm. The University of Iowa, United States of America.

Maehre, H.K., Dalheim, L., Edvinsen, K., Elvevoll, E.O. & Jensen, I.J. (2018). Protein determination-method matters. Foods 7: 5. http://doi:10.3390/foods7010005.

Padamwar, M.N. & Pawar, A.P. (2004). Silk sericin and its applications. Journal of Scientific and Industrial Research 63: 323-329.

Prasong, S., Yaowalak, S. & Wilaiwan, S. (2009). Characteristics of silk fiber with and without sericin component: a comparison between Bombyx mori and Philosamia ricini silks. Pakistan Journal of Biological Sciences 12(11): 872-876.

Rajput, SK & Singh, M.K. (2015). Sericin a unique biomaterial. IOSR Journal of Polymer & Textile Engineering 2(3): 29-35.

Said, K.A.M., Afizal, M. & Amin, M. (2015). Overview of the Response Surface Methodology (RSM) in Extraction Processes. Journal of Applied Science & Process Engineering 2(1): 8-17.

Shimadzu. (2022). Shimadzu Analysis Guidebook. https://www.shimadzu.com/an/sites/ shimadzu.com.an/files/pim/pim_document_file/applications/application_note/10725/apz18006.pdf

Suriana. (2011). Karakterisasi serat sutera dan gen penyandi fibroin pada ulat sutera liar Cricula trifenestrata Helfer (Lepidoptera: Saturniidae) [disertasi]. Program Pascasarjana, Institut Pertanian Bogor, Bogor.

Takasu, Y., Hata, T., Uchino, K. & Zhang, Q. (2010). Identification of Ser2 proteins as major sericin components in the non-cocoon silk of Bombyx mori. Insect Biochemistry and Molecular Biology 40: 339-344.

Tokutake, S. (1980). Isolation of the smallest component of silk protein. Journal of Biochemistry 187: 413-417.

Wu, J.H., Wang, Z. & Xu, S.Y. (2007). Preparation and characterization of sericin powder extracted from silk industry wastewater. Food Chemistry 103: 1255-1262.

Yamada, H. & Tsubouchi, K. (2001). Characterization of silk proteins in the cocoon fibers of Cricula trifenestrata. International Journal of Wild Silkmoth & Silk 6: 47-54.

Zhang, Y.Q, Tao, M.L., Shen, W.D., Zhou Y.Z., Ding, Y., Ma, Y. & Zhou, W.L. (2004). Immobilization of L-asparaginase on the microparticles of the natural silk sericin protein and its characters. Biomaterials 25: 3751-3759.



DOI: https://doi.org/10.22146/agritech.71950

Article Metrics

Abstract views : 1349 | views : 890

Refbacks

  • There are currently no refbacks.




Copyright (c) 2023 Yuni Cahya Endrawati, Dedy Duryadi Solihin, Ani Suryani Suryani, Noviyan Darmawan Darmawan, Irma Herawati Suparto, Bella Fitri Rahmantika

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

agriTECH has been Indexed by:


agriTECH (print ISSN 0216-0455; online ISSN 2527-3825) is published by Faculty of Agricultural Technology, Universitas Gadjah Mada in colaboration with Indonesian Association of Food Technologies.


website statisticsView My Stats